Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Chun Liu x
Clear All Modify Search
Free access

Xiaonan Yan, Chun Yuan, Nannan Zhao, Yugui Cui and Jiayin Liu

In adolescent girls with polycystic ovary syndrome (PCOS), neuroendocrine derangements manifest after the onset of puberty, characterized by rapid LH pulse frequency. The early mechanism underlying the pubertal regulation of the GNRH/LH pulsatile release in adolescents with PCOS remains uncertain. To determine the effects of prenatal androgen exposure on the activation of GNRH neurons and generation of LH pulse at puberty, we administrated 5α-dihydrotestosterone to pregnant rats and observed serum LH levels and expression of hypothalamic genes in female offspring from postnatal 4 to 8 weeks. The 6-week-old prenatally androgenized (PNA) female rats exhibited an increase in LH pulse frequency. The hypothalamic expression of neurokinin B (Nkb (Tac2)) and Lepr mRNA levels in PNA rats increased remarkably before puberty and remained high during puberty, whereas elevated Kiss1 mRNA levels were detected only after the onset of puberty. Exogenous kisspeptin, NK3R agonist, and leptin triggered tonic stimulation of GNRH neurons and increased LH secretion in 6-week-old PNA rats. Leptin upregulated Kiss1 mRNA levels in the hypothalamus of pubertal PNA rats; however, pretreatment with a kisspeptin antagonist failed to suppress the elevated serum LH stimulated by leptin, indicating that the stimulatory effects of leptin may be conveyed indirectly to GNRH neurons via other neural components within the GNRH neuronal network, rather than through the kisspeptin–GPR54 pathway. These findings validate the hypotheses that NKB and leptin play an essential role in the activation of GNRH neurons and initiation of increased LH pulse frequency in PNA female rats at puberty and that kisspeptin may coordinate their stimulatory effects on LH release.

Free access

Fu-Qing Yu, Chun-Sheng Han, Wei Yang, Xuan Jin, Zhao-Yuan Hu and Yi-Xun Liu

In the present study, we started out to test whether the follicle-stimulating hormone (FSH)-activated p38 MAPK signaling cascade was involved in the regulation of steroidogenesis in granulosa cells (GCs). GCs were prepared from the ovaries of DES-treated immature rats and cultured in serum-free medium. Treatment of GCs with FSH (50 ng/ml) induced the phosphorylation of p38 MAPK rapidly with the phosphorylation being observed within 5 min and reaching the highest level at 30 min. Such activation was protein kinase A-dependent as indicated by the results using specific inhibitors. FSH stimulated the production of progesterone and estradiol as well as the expression of the steroidogenic acute regulatory protein (StAR) in a time-dependent manner, with a maximum level being observed in the production of progesterone and StAR at 48 h. Moreover, the potent p38 MAPK inhibitor SB203580 (20 μM) augmented FSH-induced progesterone and StAR production, while reduced FSH-induced estradiol production at the same time (P<0.01). RT-PCR data showed that inclusion of SB203580 in the media enhanced FSH-stimulated StAR mRNA production, while decreased the FSH-stimulated P450arom mRNA expression (P<0.05). Immunocytochemical studies showed that FSH treatment together with the inhibition of p38 MAPK activity resulted in a higher expression of StAR in mitochondria than FSH treatment alone. FSH also significantly up-regulated the protein level of LRH-1, a member of the orphan receptor family that activates the expression of P450arom in ovaries and testes. p38 MAPK inactivation down-regulated the basal and FSH-induced LRH-1 expression significantly. The intra-cellular level of DAX-1, another orphan receptor that inhibits StAR expression, also decreased upon p38 MAPK being inactivated. For the first time, the present study suggests that FSH-activated p38 MAPK signal pathway regulates progesterone and estrogen production in GCs differentially, and that the transcription factors LRH-1 and DAX-1 might play important roles in the process.

Free access

Chun Zeng, Xin Yi, Danny Zipris, Hongli Liu, Lin Zhang, Qiaoyun Zheng, Krishnamurthy Malathi, Ge Jin and Aimin Zhou

The cause of type 1 diabetes continues to be a focus of investigation. Studies have revealed that interferon α (IFNα) in pancreatic islets after viral infection or treatment with double-stranded RNA (dsRNA), a mimic of viral infection, is associated with the onset of type 1 diabetes. However, how IFNα contributes to the onset of type 1 diabetes is obscure. In this study, we found that 2-5A-dependent RNase L (RNase L), an IFNα-inducible enzyme that functions in the antiviral and antiproliferative activities of IFN, played an important role in dsRNA-induced onset of type 1 diabetes. Using RNase L-deficient, rat insulin promoter-B7.1 transgenic mice, which are more vulnerable to harmful environmental factors such as viral infection, we demonstrated that deficiency of RNase L in mice resulted in a significant delay of diabetes onset induced by polyinosinic:polycytidylic acid (poly I:C), a type of synthetic dsRNA, and streptozotocin, a drug which can artificially induce type 1-like diabetes in experimental animals. Immunohistochemical staining results indicated that the population of infiltrated CD8+T cells was remarkably reduced in the islets of RNase L-deficient mice, indicating that RNase L may contribute to type 1 diabetes onset through regulating immune responses. Furthermore, RNase L was responsible for the expression of certain proinflammatory genes in the pancreas under induced conditions. Our findings provide new insights into the molecular mechanism underlying β-cell destruction and may indicate novel therapeutic strategies for treatment and prevention of the disease based on the selective regulation and inhibition of RNase L.

Free access

Zhiguo Liu, Chun Yan Lim, Michelle Yu-Fah Su, Stephanie Li Ying Soh, Guanghou Shui, Markus R Wenk, Kevin L Grove, George K Radda, Weiping Han and Xiaoqiu Xiao

Neonatal overnutrition results in accelerated development of high-fat diet (HFD)-induced metabolic defects in adulthood. To understand whether the increased susceptibility was associated with aggravated inflammation and dysregulated lipid metabolism, we studied metabolic changes and insulin signaling in a chronic postnatal overnutrition (CPO) mouse model. Male Swiss Webster pups were raised with either three pups per litter to induce CPO or ten pups per litter as control (CTR) and weaned to either low-fat diet (LFD) or HFD. All animals were killed on the postnatal day 150 (P150) except for a subset of mice killed on P15 for the measurement of stomach weight and milk composition. CPO mice exhibited accelerated body weight gain and increased body fat mass prior to weaning and the difference persisted into adulthood under conditions of both LFD and HFD. As adults, insulin signaling was more severely impaired in epididymal white adipose tissue (WAT) from HFD-fed CPO (CPO–HFD) mice. In addition, HFD-induced upregulation of pro-inflammatory cytokines was exaggerated in CPO–HFD mice. Consistent with greater inflammation, CPO–HFD mice showed more severe macrophage infiltration than HFD-fed CTR (CTR–HFD) mice. Furthermore, when compared with CTR–HFD mice, CPO–HFD mice exhibited reduced levels of several lipogenic enzymes in WAT and excess intramyocellular lipid accumulation. These data indicate that neonatal overnutrition accelerates the development of insulin resistance and exacerbates HFD-induced metabolic defects, possibly by worsening HFD-induced inflammatory response and impaired lipid metabolism.

Full access

Hong Ma, Jin Yuan, Jinyu Ma, Jie Ding, Weiwei Lin, Xinlei Wang, Mingliang Zhang, Yi Sun, Runze Wu, Chun Liu, Cheng Sun and Yunjuan Gu

Bone morphogenetic protein 7 (BMP7), a member of the transforming growth factor-β (TGF-β) family, plays pivotal roles in energy expenditure. However, whether and how BMP7 regulates hepatic insulin sensitivity is still poorly understood. Here, we show that hepatic BMP7 expression is reduced in high-fat diet (HFD)-induced diabetic mice and palmitate (PA)-induced insulin-resistant HepG2 and AML12 cells. BMP7 improves insulin signaling pathway in insulin resistant hepatocytes. On the contrary, knockdown of BMP7 further impairs insulin signal transduction in PA-treated cells. Increased expression of BMP7 by adenovirus expressing BMP7 improves hyperglycemia, insulin sensitivity and insulin signal transduction. Furthermore, BMP7 inhibits mitogen-activated protein kinases (MAPKs) in both the liver of obese mice and PA-treated cells. In addition, inhibition of MAPKs recapitulates the effects of BMP7 on insulin signal transduction in cultured hepatocytes treated with PA. Activation of p38 MAPK abolishes the BMP7-mediated upregulation of insulin signal transduction both in vitro and in vivo. Together, our results show that hepatic BMP7 has a novel function in regulating insulin sensitivity through inhibition of MAPKs, thus providing new insights into treating insulin resistance-related disorders such as type 2 diabetes.