Search Results
You are looking at 1 - 3 of 3 items for
- Author: Craig A Smith x
- Refine by access: All content x
Search for other papers by Zahida Yesmin Roly in
Google Scholar
PubMed
Search for other papers by Andrew T Major in
Google Scholar
PubMed
Search for other papers by Alex Fulcher in
Google Scholar
PubMed
Search for other papers by Martin A Estermann in
Google Scholar
PubMed
Search for other papers by Claire E Hirst in
Google Scholar
PubMed
Search for other papers by Craig A Smith in
Google Scholar
PubMed
The embryonic Müllerian ducts give rise to the female reproductive tract (fallopian tubes, uterus and upper vagina in humans, the oviducts in birds). Embryonic Müllerian ducts initially develop in both sexes, but later regress in males under the influence of anti-Müllerian hormone. While the molecular and endocrine control of duct regression in males have been well studied, early development of the ducts in both sexes is less well understood. Here, we describe a novel role for the adhesion G protein-coupled receptor, GPR56, in development of the Müllerian ducts in the chicken embryo. GPR56 is expressed in the ducts of both sexes from early stages. The mRNA is present during the elongation phase of duct formation, and it is restricted to the inner Müllerian duct epithelium. The putative ligand, Collagen III, is abundantly expressed in the Müllerian duct at the same developmental stages. Knockdown of GPR56 expression using in ovo electroporation results in variably truncated ducts, with a loss of expression of both epithelial and mesenchymal markers of duct development. Over-expression of GPR56 in vitro results in enhanced cell proliferation and cell migration. These results show that GPR56 plays an essential role in avian Müllerian duct development through the regulation of duct elongation.
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Stuart A Morgan in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Zaki K Hassan-Smith in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Craig L Doig in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Mark Sherlock in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
School of Medicine, Worsley Building, University of Leeds, Leeds, UK
Search for other papers by Paul M Stewart in
Google Scholar
PubMed
Centre for Endocrinology Diabetes and Metabolism, Birmingham Health Partners, University of Birmingham, Birmingham, UK
Search for other papers by Gareth G Lavery in
Google Scholar
PubMed
The adverse metabolic effects of prescribed and endogenous glucocorticoid excess, ‘Cushing’s syndrome’, create a significant health burden. While skeletal muscle atrophy and resultant myopathy is a clinical feature, the molecular mechanisms underpinning these changes are not fully defined. We have characterized the impact of glucocorticoids upon key metabolic pathways and processes regulating muscle size and mass including: protein synthesis, protein degradation, and myoblast proliferation in both murine C2C12 and human primary myotube cultures. Furthermore, we have investigated the role of pre-receptor modulation of glucocorticoid availability by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in these processes. Corticosterone (CORT) decreased myotube area, decreased protein synthesis, and increased protein degradation in murine myotubes. This was supported by decreased mRNA expression of insulin-like growth factor (IGF1), decreased activating phosphorylation of mammalian target of rapamycin (mTOR), decreased phosphorylation of 4E binding protein 1 (4E-BP1), and increased mRNA expression of key atrophy markers including: atrogin-1, forkhead box O3a (FOXO3a), myostatin (MSTN), and muscle-ring finger protein-1 (MuRF1). These findings were endorsed in human primary myotubes, where cortisol also decreased protein synthesis and increased protein degradation. The effects of 11-dehydrocorticosterone (11DHC) (in murine myotubes) and cortisone (in human myotubes) on protein metabolism were indistinguishable from that of CORT/cortisol treatments. Selective 11β-HSD1 inhibition blocked the decrease in protein synthesis, increase in protein degradation, and reduction in myotube area induced by 11DHC/cortisone. Furthermore, CORT/cortisol, but not 11DHC/cortisone, decreased murine and human myoblast proliferative capacity. Glucocorticoids are potent regulators of skeletal muscle protein homeostasis and myoblast proliferation. Our data underscores the potential use of selective 11β-HSD1 inhibitors to ameliorate muscle-wasting effects associated with glucocorticoid excess.
Search for other papers by Andrew T Major in
Google Scholar
PubMed
Search for other papers by Katie L Ayers in
Google Scholar
PubMed
Search for other papers by Justin Chue in
Google Scholar
PubMed
Search for other papers by Kelly N Roeszler in
Google Scholar
PubMed
Search for other papers by Craig A Smith in
Google Scholar
PubMed
FOXL2 is a conserved transcription factor with a central role in ovarian development and function. Studies in humans and mice indicate that the main role of FOXL2 is in the postnatal ovary, namely folliculogenesis. To shed light on the function and evolution of FOXL2 in the female gonad, we examined its role in embryonic avian gonads, using in ovo overexpression and knockdown. FOXL2 mRNA and protein are expressed female specifically in the embryonic chicken gonad, just prior to the onset of sexual differentiation. FOXL2 is expressed in the medullary cord cells, in the same cell type as aromatase (CYP19A1). In addition, later in development, expression also becomes localised in a subset of cortical cells, distinct from those expressing oestrogen receptor alpha. Misexpression of FOXL2 in the male chicken embryonic gonad suppresses the testis developmental pathway, abolishing local expression of the male pathway genes SOX9, DMRT1 and AMH and repressing Sertoli cell development. Conversely, knockdown of FOXL2 expression allows ectopic activation of SOX9 in female gonads. However, misexpression of FOXL2 alone was insufficient to activate aromatase expression in male gonads, while FOXL2 knockdown did not affect aromatase expression in females. These results indicate that FOXL2 plays an important role in embryonic differentiation of the avian ovary via antagonism of SOX9, but may be dispensable for aromatase activation at embryonic stages. The data suggest that FOXL2 has different roles in different species, more central for embryonic ovarian differentiation in egg-laying vertebrates.