Search Results

You are looking at 1 - 2 of 2 items for

  • Author: D Blache x
  • Refine by access: All content x
Clear All Modify Search
D W Miller
Search for other papers by D W Miller in
Google Scholar
PubMed
Close
,
D Blache
Search for other papers by D Blache in
Google Scholar
PubMed
Close
, and
G B Martin
Search for other papers by G B Martin in
Google Scholar
PubMed
Close

Abstract

The effect of nutrition on gonadotrophin secretion may be exerted through a central metabolic signal that reflects nutritional status. We have previously found that glucose and insulin concentrations are elevated in the cerebrospinal fluid (CSF) of rams in which the secretion of gonadotrophins has been stimulated by a nutritional supplement of lupin grain (Lupinus angustifolius). In the present study, we tested the hypothesis that insulin and/or glucose is a metabolic modulator of GnRH secretion and mediates the effects of nutrition on gonadotrophin secretion. Six mature rams were fed a diet that maintained live weight and then given a series of infusions, each for 12 h/day for 4 days, in a cross-over design. The treatments were: artificial CSF (aCSF), glucose (50 μmol/h) in aCSF, insulin (0·6 ng/h) in aCSF, and glucose (50 μmol/h) plus insulin (0·6 ng/h) in aCSF; all infused at a rate of 5 μl/min. At the same time as the infusion treatments, two other groups of four rams without cerebral cannulae were fed either the maintenance diet or the same diet supplemented with 750 g lupin grain per head per day for 4 days, again in a cross-over design. Rams fed the lupin supplement showed an increase in both LH pulse frequency and mean FSH on day 4 (P<0·05). Infusion of aCSF or glucose did not affect gonadotrophin secretion. Rams infused with insulin or insulin plus glucose showed an increase (P<0·05) in LH pulse frequency but no increase in FSH concentrations on day 4 of infusion. The magnitude of the LH response to insulin was similar to the nutritional response of feeding lupin supplements. There was no effect of any of the infusion treatments on plasma prolactin or insulin secretion. These data show that changes in insulin concentrations in the CSF lead to changes in LH secretion and support the hypothesis that insulin is a metabolic modulator of GnRH secretion and mediates the effects of nutrition on gonadotrophin secretion.

Journal of Endocrinology (1995) 147, 321–329

Restricted access
D Blache
Search for other papers by D Blache in
Google Scholar
PubMed
Close
,
RL Tellam
Search for other papers by RL Tellam in
Google Scholar
PubMed
Close
,
LM Chagas
Search for other papers by LM Chagas in
Google Scholar
PubMed
Close
,
MA Blackberry
Search for other papers by MA Blackberry in
Google Scholar
PubMed
Close
,
PE Vercoe
Search for other papers by PE Vercoe in
Google Scholar
PubMed
Close
, and
GB Martin
Search for other papers by GB Martin in
Google Scholar
PubMed
Close

In mature male sheep, the level of nutrition acutely influences the secretion of reproductive hormones. The mechanism involved is not fully understood but findings in humans and laboratory rodents would suggest a major role for leptin that is secreted from adipose tissue and then travels via the circulation to the central nervous system. Before we can begin to test this hypothesis, we need to be able to measure leptin concentrations in blood plasma and cerebrospinal fluid. We have therefore developed a radioimmunoassay using antibodies raised against biologically active recombinant bovine-ovine leptin. Using this assay, we found that plasma concentrations of leptin were highly correlated to back-fat thickness and to the ratio of back-fat thickness to liveweight, in female and castrated male sheep. Plasma concentrations of leptin were higher in female sheep than in castrated or intact male sheep. Serial samples (every 5 min) suggested that the secretion of leptin in male sheep is episodic but it does not appear to show clear pulsatility, increases post-prandially, or a diurnal rhythm. Leptin concentrations in both plasma and cerebrospinal fluid increased within 5 days in male sheep fed a diet with a high content of energy and protein that also stimulates the secretion of LH pulses. These data suggest that in sheep, as in other species, leptin production is correlated with the mass of adipose tissue and that the hormone passes from the circulation to the cerebrospinal fluid and then to hypothalamic sites. There, it may affect appetite and perhaps GnRH secretion. The role of leptin in the link between nutrition and reproduction needs further investigation.

Free access