Search Results

You are looking at 1 - 2 of 2 items for

  • Author: D J Baylink x
  • Refine by access: All content x
Clear All Modify Search
S Mohan Musculoskeletal Diseases Center, JLP Veterans Administration Medical Center, 11201 Benton St, Loma Linda, California 92357, USA
Departments of Medicine,
Biochemistry and
Physiology, Loma Linda University, Loma Linda, California 92354, USA

Search for other papers by S Mohan in
Google Scholar
PubMed
Close
and
D J Baylink Musculoskeletal Diseases Center, JLP Veterans Administration Medical Center, 11201 Benton St, Loma Linda, California 92357, USA
Departments of Medicine,
Biochemistry and
Physiology, Loma Linda University, Loma Linda, California 92354, USA

Search for other papers by D J Baylink in
Google Scholar
PubMed
Close

Although it is well established that there is considerable inter-individual variation in the circulating levels of IGF-I in normal, healthy individuals and that a genetic component contributes substantially to this variation, the direct evidence that inter-individual variation in IGF-I contributes to differences in peak bone mineral density (BMD) is lacking. To examine if differences in IGF-I expression could contribute to peak BMD differences, we measured skeletal changes at days 23 (prepubertal), 31 (pubertal) and 56 (postpubertal) in mice with haploinsufficiency of IGF-I (+/−) and corresponding control mice (+/+). Mice (MF1/DBA) heterozygous for the IGF-I knockout allele were bred to generate +/+ and +/− mice (n=18–20 per group). Serum IGF-I was decreased by 23% (P<0.001) in mice with IGF-I haploinsufficiency (+/−) group at day 56 compared with the control (+/+) group. Femoral bone mineral content and BMD, as determined by dual energy X-ray absorptiometry, were reduced by 20% (P<0.001) and 12% respectively in the IGF-I (+/−) group at day 56 compared with the control group. The peripheral quantitative computed tomography measurements at the femoral mid-diaphysis revealed that periosteal circumference (7%, P<0.01) and total volumetric BMD (5%, P<0.05) were decreased significantly in the +/− group compared with the +/+ group. Furthermore, serum IGF-I showed significant positive correlations with both areal BMD (r=0.55) and periosteal circumference (r=0.66) in the pooled data from the +/+ and +/− groups. Our findings that haploinsufficiency of IGF-I caused significant reductions in serum IGF-I level, BMD and bone size, together with the previous findings, are consistent with the notion that genetic variations in IGF-I expression could, in part, contribute to inter-individual differences in peak BMD among a normal population.

Free access
N Srinivasan
Search for other papers by N Srinivasan in
Google Scholar
PubMed
Close
,
D Edwall
Search for other papers by D Edwall in
Google Scholar
PubMed
Close
,
T A Linkhart
Search for other papers by T A Linkhart in
Google Scholar
PubMed
Close
,
D J Baylink
Search for other papers by D J Baylink in
Google Scholar
PubMed
Close
, and
S Mohan
Search for other papers by S Mohan in
Google Scholar
PubMed
Close

Abstract

The PC-3 human prostatic carcinoma cell line has been extensively used as a model for studies on the regulation of prostate tumor cell proliferation. Because of the importance of IGF-binding proteins (IGFBPs) in the control of IGF activities that regulate cell proliferation in normal and malignant cell types, we undertook studies to characterize the IGFBPs produced by PC-3 prostate tumor cells in culture. We previously found, using an IGF-I affinity column for purification and a polyethylene glycol (PEG) precipitation assay for IGFBP detection, that PC-3 cells in culture produced a single predominant IGFBP, IGFBP-4, which inhibits IGF activities. We now present evidence that PC-3 cells also produce IGFBP-6 in abundant quantity; in the previous study this was apparently not detected in the IGF-I-bound fraction with the PEG precipitation and Western ligand blot assays. In the current study, IGF-II affinity purification of IGFBPs produced by PC-3 cells, followed by C8 HPLC reverse-phase chromatography using a shallow acetonitrile gradient, produced two major protein peaks. N-terminal amino acid sequence of peak 1 was identical to that of IGFBP-6 while that of peak 2 was identical to that of IGFBP-4. Characterization of purified IGFBP-6 from PC-3 cells revealed properties which are distinct from other IGFBPs. PEG did not precipitate the complex of 125I-IGF-II/IGFBP-6 while it precipitated the complexes between 125I-IGF-II and other IGFBPs. Indeed, IGFBP-6 decreased the amount of 125I-IGF-II tracer in the PEG precipitate in a dose-dependent manner. Also, the binding of IGFBP-6 with 125I-IGF-II was poor in Western ligand blots compared with other IGFBPs. In studies on IGFBP-6 actions, IGFBP-6 completely inhibited IGF-II-induced [3H]thymidine incorporation in MC3T3-E1 mouse osteoblast cells while it had only minimal inhibitory effects on IGF-I-induced [3H]thymidine incorporation. This differential effect is associated with the fact that IGFBP-6 has greater affinity for IGF-II than IGF-I. The results of this study indicated that (1) Western ligand blotting is not sensitive for identification of IGFBP-6, (2) the unique behavior of IGFBP-6 in the PEG assay system necessitates the use of charcoal adsorption procedure for IGFBP-6 activity detection and (3) PC-3 cells should provide a useful model system for studying regulation of IGFBP-6 expression and the role of IGFBP-6 in modulating IGF actions.

Journal of Endocrinology (1996) 149, 297–303

Restricted access