Search Results

You are looking at 1 - 3 of 3 items for

  • Author: D Ribeiro x
  • All content x
Clear All Modify Search
Free access

L Morgan, J Arendt, D Owens, S Folkard, S Hampton, S Deacon, J English, D Ribeiro, and K Taylor

This study was undertaken to determine whether the internal clock contributes to the hormone and metabolic responses following food, in an experiment designed to dissociate internal clock effects from other factors. Nine female subjects participated. They lived indoors for 31 days with normal time cues, including the natural light: darkness cycle. For 7 days they retired to bed from 0000 h to 0800 h. They then underwent a 26-h 'constant routine' (CR) starting at 0800 h, being seated awake in dim light with hourly 88 Kcal drinks. They then lived on an imposed 27-h day (18 h of wakefulness, 9 h allowed for sleep), for a total of 27 days. A second 26-h CR, starting at 2200 h, was completed. During each CR salivary melatonin and plasma glucose, triacylglycerol (TAG), non-essential fatty acids (NEFA), insulin, gastric inhibitory peptide (GIP) and glucagon-like peptide-1 (GLP-1) were measured hourly. Melatonin and body temperature data indicated no shift in the endogenous clock during the 27-h imposed schedule. Postprandial NEFA, GIP and GLP-1 showed no consistent effects. Glucose, TAG and insulin increased during the night in the first CR. There was a significant effect of both the endogenous clock and sleep for glucose and TAG, but not for insulin. These findings may be relevant to the known increased risk of cardiovascular disease amongst shift workers.

Restricted access

S M Hampton, L M Morgan, N Lawrence, T Anastasiadou, F Norris, S Deacon, D Ribeiro, and J Arendt


This study was designed to investigate postprandial responses to a mixed meal in simulated shift work conditions. Nine normal healthy subjects (six males and three females) were studied on two occasions at the same clock time (1330 h) after consuming test meals, first in their normal environment and secondly after a 9 h phase advance (body clock time 2230 h). Plasma glucose, insulin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), triacylglycerol (TAG) and non-esterified fatty acids (NEFAs) were determined at intervals for 6 h after each test meal. Postprandial plasma glucose, insulin, GIP and GLP-1 profiles were evaluated by calculating areas under the curve (AUC) for the first 2 h and the last 4 h of the sampling together with total AUC. Significantly higher postprandial glucose responses (total AUC) were observed after the phase shift than before (AUC 0–360 min, 2·01 (1·51–2·19) vs 1·79 (1·56–2·04) mmol/l.min; P<0·02; mean (range)). No significant difference was observed when the first 2 h of each response was compared, but significantly higher glucose levels were observed in the last 4 h of the study after the phase shift than before (AUC 120–360 min, 1·32 (1·08–1·42) vs 1·16 (1·00–1·28) mmol/l.min; P<0·05). Similar results were obtained for insulin (AUC 0—360 min, 81·72 (30·75– 124·97) vs 58·98 (28·03–92·57) pmol/l.min; P<0·01; AUC 120–360 min, 40·73 (16·20–65·25) vs 25·71 (14·25–37·33) pmol/l.min; P<0·02). No differences were observed in postprandial plasma GIP and GLP-1 responses before and after the phase shift. Postprandial circulating lipid levels were affected by phase shifting. Peak plasma TAG levels occurred 5 h postprandially before the phase shift. Postprandial rises in plasma TAG were significantly delayed after the phase shift and TAG levels continued to rise throughout the study. Plasma postprandial NEFA levels fell during the first 3 h both before and after the phase shift. Their rate of return to basal levels was significantly delayed after the phase shift compared with before. This study demonstrates that a simulated phase shift can significantly alter pancreatic B-cell responses and postprandial glucose and lipid metabolism.

Journal of Endocrinology (1996) 151, 259–267

Free access

Cintia B Ueta, Gustavo W Fernandes, Luciane P Capelo, Tatiane L Fonseca, Flávia D'Angelo Maculan, Cecilia H A Gouveia, Patrícia C Brum, Marcelo A Christoffolete, Marcelo S Aoki, Carmen L Lancellotti, Brian Kim, Antonio C Bianco, and Miriam O Ribeiro

Brown adipose tissue (BAT) is predominantly regulated by the sympathetic nervous system (SNS) and the adrenergic receptor signaling pathway. Knowing that a mouse with triple β-receptor knockout (KO) is cold intolerant and obese, we evaluated the independent role played by the β1 isoform in energy homeostasis. First, the 30 min i.v. infusion of norepinephrine (NE) or the β1 selective agonist dobutamine (DB) resulted in similar interscapular BAT (iBAT) thermal response in WT mice. Secondly, mice with targeted disruption of the β1 gene (KO of β1 adrenergic receptor (β1KO)) developed hypothermia during cold exposure and exhibited decreased iBAT thermal response to NE or DB infusion. Thirdly, when placed on a high-fat diet (HFD; 40% fat) for 5 weeks, β1KO mice were more susceptible to obesity than WT controls and failed to develop diet-induced thermogenesis as assessed by BAT Ucp1 mRNA levels and oxygen consumption. Furthermore, β1KO mice exhibited fasting hyperglycemia and more intense glucose intolerance, hypercholesterolemia, and hypertriglyceridemia when placed on the HFD, developing marked non-alcoholic steatohepatitis. In conclusion, the β1 signaling pathway mediates most of the SNS stimulation of adaptive thermogenesis.