Search Results

You are looking at 1 - 3 of 3 items for

  • Author: D Sugden x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

D. Sugden

ABSTRACT

2-Iodomelatonin, a ligand which has recently been used to identify melatonin-binding sites in the brain, produced condensation of pigment granules when added to isolated Xenopus laevis melanophores in culture. Melatonin (EC 50 = 5.7 × 10−13 mol/l), 2-iodomelatonin (EC 50 = 3.4 × 10−12 mol/l) and also 2-chloromelatonin (EC 50 = 2.9 × 10−13 mol/l) were all potent agonists in this test. Melatonin analogues in which the side-chain was conformationally restricted by linkage to the 2-position of the indole ring were inactive (EC 50 > 10−6 mol/l). The remarkable sensitivity and selectivity of this pigment condensation response suggests it will be useful in future studies of melatonin agonists and antagonists.

Free access

HT Al-Majed, PM Jones, SJ Persaud, D Sugden, GC Huang, S Amiel, and BJ Whitehouse

It has previously been suggested that ACTH and ACTH-related peptides may act as paracrine modulators of insulin secretion in the islets of Langerhans. We have, therefore, examined the expression and function of the ACTH receptor (the melanocortin 2 receptor, MC2-R) in human and mouse primary islet tIssue and in the MIN6 mouse insulinoma cell line. Mouse MC2-R mRNA was detected in both MIN6 cells and mouse islet tIssue by PCR amplification of cDNA. In perifusion experiments with MIN6 pseudo-islets, a small, transient increase in insulin secretion was obtained when ACTH(1-24) (1 nM) was added to medium containing 2 mM glucose (control) but not when the medium glucose content was increased to 8 mM. Further investigations were performed using static incubations of MIN6 cell monolayers; ACTH(1-24) (1 pM-10 nM) provoked a concentration-dependent increase in insulin secretion from MIN6 monolayer cells that achieved statistical significance at concentrations of 1 and 10 nM (150 +/- 13.6% basal secretion; 187 +/- 14.9% basal secretion, P<0.01). Similar responses were obtained with ACTH(1-39). The phosphodiesterase inhibitor IBMX (100 microM) potentiated the responses to sub-maximal doses of ACTH(1-24). Two inhibitors of the protein kinase A (PKA) signaling pathway, Rp-cAMPS (500 microM) and H-89 (10 microM), abolished the insulin secretory response to ACTH(1-24) (0.5-10 nM). Treatment with 1 nM ACTH(1-24) caused a small, statistically significant increase in intracellular cAMP levels. Secretory responses of MIN6 cells to ACTH(1-24) were also influenced by changes in extracellular Ca2+ levels. Incubation in Ca2+-free buffer supplemented with 0.1 mM EGTA blocked the MIN6 cells' secretory response to 1 and 10 nM ACTH(1-24). Similar results were obtained when a Ca2+ channel blocker (nitrendipine, 10 microM) was added to the Ca2+-containing buffer. ACTH(1-24) also evoked an insulin secretory response from primary tIssues. The addition of ACTH(1-24) (0.5 nM) to perifusions of mouse islets induced a transient increase in insulin secretion at 8 mM glucose. Perifused human primary islets also showed a secretory response to ACTH(1-24) at basal glucose concentration (2 mM) with a rapid initial spike in insulin secretion followed by a decline to basal levels. Overall the results demonstrate that the MC2-R is expressed in beta-cells and suggest that activation of the receptor by ACTH initiates insulin secretion through the activation of PKA in association with Ca2+ influx into beta-cells.

Restricted access

E. C. Osborn, P. L. Sugden, J. C. Mackenzie, D. M. Aitken, I. D. Chapman, S. Howes, O. F. Mason, G. V. Rigby, and J. Wilson

ABSTRACT

Angiotensin II and I significantly raised potassium and lowered sodium and chloride ion concentrations in arterial plasma, with peak changes occurring in the first 2 min of a 6-min infusion period. The octapeptide increased the arterial K+ level in a dose-dependent manner, but the response showed tachyphylaxis when multiple infusions of 6-min duration were administered after a recovery interval of only 5 min. Raising the arterial blood pressure by 20–33 mmHg with adrenaline and noradrenaline failed to account for the increase in arterial plasma K+ concentration produced by the two peptides. These findings, in particular the rise in K+ concentration, are discussed in relation to possible mechanisms by which angiotensin II affects arteriolar tone.

J. Endocr. (1985) 104, 143–148