Search Results

You are looking at 1 - 5 of 5 items for

  • Author: D Yu x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access

P. D. STURKIE and YU-CHONG LIN

Tanaka & Nakajo (1962) have reported a decrease in the content of vasotocin in the posterior pituitary of hens coincident with oviposition, suggesting that the hormone was released into the blood and causes oviposition. Douglas & Sturkie (1964) assayed vasotocin in the blood of laying hens and found that the concentration of the hormone increased markedly a few minutes before oviposition, returning to resting levels within 10–20 min. after laying. Little is known about the factors involved in the release of vasotocin and this is the principal objective of this study.

article image

Vasotocin was assayed on the isolated frog bladder (Rana catesbiana) by a modification of the method of Sawyer (1960). The movement of water across the bladder wall is proportional to log concentration of hormone acting upon it. Oxytocin (Pitocin assayed against synthetic oxytocin) was used as the standard. Three standard points, 2, 10 and 50 m-u. oxytocin/ml. bath solution,

Free access

K Kataoka, D Yu, and M Miura

We have investigated the role of the NPXY motif in the insulin-like growth factor I receptor (IGF-IR) by focusing on the activation of the phosphatidylinositol-3' kinase (PI3-K) pathway and DNA synthesis following IGF-I stimulation. For this purpose, we established stable R-cell lines, which are deficient in endogenous IGF-IR, and express human IGF-IR lacking the whole NPEY(950) sequence (DeltaNPEY). The DeltaNPEY cells showed an apparent autophosphorylation of IGF-IR, albeit with reduced sensitivity to stimulation compared with cells expressing similar levels of wild-type IGF-IR. Activation of insulin receptor substrate (IRS)-1 and IRS-2 was severely impaired in DeltaNPEY cells even at high concentrations of IGF-I. However, recruitment of p85, a regulatory subunit of PI3-K, to activated IRS-2 was similar between the cell lines, but recruitment of p85 to IRS-1 was reduced in DeltaNPEY cells. Essentially similar levels of p85- or phosphotyrosine-associated PI3-K and Akt activities were observed between the cell lines, although the sensitivity to stimulation was reduced in DeltaNPEY cells. Activation of extracellular signal-regulated kinase and DNA synthesis were virtually unaffected by the mutation, in terms of both sensitivity to stimulation and responsiveness. DNA synthesis was completely inhibited by the PI3-K inhibitor, LY294002. These results indicate that the IGF-IR is able to activate the PI3-K pathway and induce DNA synthesis in a normal fashion without the NPXY motif when the receptor is fully activated.

Restricted access

D A Langlois, S G Matthews, M Yu, and K Yang

Abstract

In adult mammals, liver and kidney are the two major sites of biosynthesis for 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2 respectively. In the present study, the expression of these two isozymes in the developing ovine fetal liver and kidney was characterized. Livers and kidneys were obtained from fetal sheep at days 85, 100–120 and 140–143 of gestation (term=145 days). Tissue levels of 11β-HSD2 mRNA were assessed by Northern blot analysis. 11β-HSD dehydrogenase and reductase activities in tissue homogenates were determined by a radiometric conversion assay using cortisol and cortisone as physiological substrates respectively. The unidirectional 11β-HSD2 dehydrogenase activity was identified by its distinct co-factor preference (NAD), and by its unique ability to metabolize dexamethasone (Dex). In the liver, 11β-HSD1 dehydrogenase and reductase activities were present by day 85, and their levels did not change between days 85 and 100–120 but increased more than twofold at days 140–143. This was consistent with changes we reported previously in the fetal hepatic 11β-HSD1 mRNA. 11β-HSD1 reductase activity was always higher than the dehydrogenase activity. 11β-HSD2 mRNA and activity were undetectable in the fetal liver at all three ages. By contrast, 11β-HSD2 mRNA was present in the fetal kidney by day 85, and its abundance increased progressively thereafter. There was a parallel increase in the renal 11β-HSD2 activity. Dex was also converted to 11-dehydro-Dex by the fetal kidney. In keeping with the absence of the full-length 11β-HSD1 mRNA, 11β-HSD1 activity was undetectable in the kidney. These results indicate that (1) 11β-HSD1 and 2 genes are differentially expressed and regulated in the fetal liver and kidney during development, (2) since the hepatic 11β-HSD1 reductase activity is always higher than the dehydrogenase activity, the fetal liver may be a potential extra-adrenal source of cortisol, and (3) 11β-HSD2 in the kidney may play a very important role in protecting the fetus from elevated levels of bioactive glucocorticoids.

Journal of Endocrinology (1995) 147, 405–411

Free access

Guofeng Zhang, Hiroki Hirai, Tao Cai, Junnosuke Miura, Ping Yu, Hanxia Huang, Martin R Schiller, William D Swaim, Richard D Leapman, and Abner L Notkins

The regulated endocrine-specific protein, RESP18, first found in the rat pituitary, was thought to be regulated by dopaminergic drugs. Bioinformatics studies showed that RESP18 shares sequence homology with the luminal region of IA-2, a dense core vesicle (DCV) transmembrane protein involved in insulin secretion. The present study was initiated to examine the genomic structure and subcellular localization of RESP18 and the effect of glucose on its expression. Human RESP18 was isolated from a pancreas cDNA library and its subcellular localization was determined by immunoelectron microscopy. MIN6 cells and mouse islets were used to study the effect of glucose on RESP18 expression. Bioinformatics analysis revealed that RESP18 and IA-2 are tandemly arranged within a 45 kb region on human chromosome 2 and share common intron–exon boundaries. By confocal microscopy, RESP18 was found in α, β and δ cells in the pancreatic islets. Electron microscopy revealed that RESP18 is present in the lumen of DCVs. The expression of RESP18 in β cells is markedly increased following exposure to high glucose and also elevated in the islets of diabetic, but not non-diabetic, NOD mice. We conclude that RESP18 is a luminal protein of DCVs and its expression is regulated by exposure to glucose.

Free access

M Candolfi, G Jaita, D Pisera, L Ferrari, C Barcia, C Liu, J Yu, G Liu, M G Castro, and A Seilicovich

Our previous work showed that tumor necrosis factor (TNF)-α and FasL induce apoptosis of anterior pituitary cells. To further analyze the effect of these proapoptotic factors, we infected primary cultures from rat anterior pituitary, GH3 and AtT20 cells with first-generation adenoviral vectors encoding TNF-α, FasL or, as a control, β-galactosidase (β-Gal), under the control of the human cytomegalovirus promoter. Successful expression of the encoded transgenes was determined by immunocytochemistry. Although we observed basal expression of TNF-α and FasL in control cultures of anterior pituitary cells, fluorescence-activated cell sorting (FACS) cell cycle analysis showed that the overexpression of TNF-α or FasL increases the percentage of hypodiploid lactotropes and somatotropes. Nuclear morphology and TUNEL staining revealed that the cells undergo an apoptotic death process. We detected strong immunoreactivity for TNFR1 and Fas in the somatolactotrope cell line GH3. TNF-α, but not FasL, was expressed in control cultures of GH3 cells. The infection of GH3 cells with adenovirus encoding TNF-α or FasL increased the percentages of hypodiploid and TUNEL-positive cells. TNF-α or FasL immunoreactivity was not observed in the corticotrope cell line AtT20. However, adenovirus encoding TNF-α or FasL efficiently transduced these cells and increased the percentages of hypodiploid and TUNEL-positive cells. The expression of β-Gal was detected in all these cultures but did not affect cell viability. In conclusion, these results suggest that death signaling cascades triggered by TNF receptor 1 (TNFR1) and Fas are present in both normal and tumoral pituitary cells. Therefore, overexpression of proapoptotic factors could be a useful tool in the therapy of pituitary adenomas.