Search Results

You are looking at 1 - 8 of 8 items for

  • Author: DJ Hill x
  • Refine by access: All content x
Clear All Modify Search
SP Bidey
Search for other papers by SP Bidey in
Google Scholar
PubMed
Close
,
DJ Hill
Search for other papers by DJ Hill in
Google Scholar
PubMed
Close
, and
MC Eggo
Search for other papers by MC Eggo in
Google Scholar
PubMed
Close

By combining data from studies of multinodular non-toxic goitre (MNTG) with data from rat models of goitre induction and in vitro models, a map of the growth factors involved in goitrogenesis has been constructed. We have addressed the roles of the insulin-like growth factors, transforming growth factors, fibroblast growth factors, endothelins, etc. We hypothesise that an imbalance in the interactions between the various growth factor axes exists in MNTG which favours cell replication. Thyrotrophin, although not significantly elevated in MNTG, exerts critical effects through interactions with autocrine and paracrine factors and their receptors. Expansion of the thyroidal vascular bed through angiogenesis is closely co-ordinated with follicular cell expansion and folliculoneogenesis, and while the integrated paracrine actions of fibroblast growth factors, vascular endothelial growth factor and endothelin probably play central roles, additional, as yet elusive, factors are probably involved. The combination of in vitro and in vivo approaches, designed to address specific questions, will undoubtedly continue to prove invaluable in dissecting further the complex interactions that exist between these growth factors, their binding proteins and receptors in goitrogenesis.

Free access
LR Green
Search for other papers by LR Green in
Google Scholar
PubMed
Close
,
Y Kawagoe
Search for other papers by Y Kawagoe in
Google Scholar
PubMed
Close
,
DJ Hill
Search for other papers by DJ Hill in
Google Scholar
PubMed
Close
,
BS Richardson
Search for other papers by BS Richardson in
Google Scholar
PubMed
Close
, and
VK Han
Search for other papers by VK Han in
Google Scholar
PubMed
Close

Intermittent umbilical cord compression with resultant fetal hypoxia can have a negative impact on fetal growth and development. Insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) are the most important regulators of fetal growth. In preterm (107-108 days of gestation) and near-term (128-131 days of gestation) ovine fetuses, we have determined the effect of intermittent umbilical cord occlusion (UCO) over a period of 4 days on the profile and expression of IGFs and IGFBPs. In experimental group animals (preterm n=7; near term n=7) UCOs were carried out by complete inflation of an occluder cuff (duration 90 s) every 30 min for 3-5 h each day, while control fetuses (preterm n=7; near term n=7) received no UCOs. Ewes were euthanized at the end of day 4, and fetal heart, lung, kidney, liver, skeletal muscle and placenta were collected. During UCOs, PO(2! ) fell (by approximately 13 mmHg), pH fell (by approximately 0.05) and PCO(2) increased (by approximately 7 mmHg), and changed to a similar extent in both preterm and near-term groups. In both preterm and near-term groups, there was no difference in fetal body or organ weight between UCO and control fetuses. No significant changes were observed in plasma IGF-I and -II concentrations or IGFBP-1, -2, -3 or -4 levels throughout the 4-day study at either gestational age. In the preterm group UCO fetuses, IGF-II mRNA (1.2-6.0 kb) levels were lower in fetal lung (33%, P<0.05), heart (54%, P<0.01) and skeletal muscle (29%, P<0.05), but there were no differences in IGF-I mRNA levels (7.3 kb); IGFBP-2 mRNA (1.5 kb) levels were lower in the right lobe of the liver (42%, P<0.05) and kidney (22%, P<0.01), but hig! her in the heart (72%, P<0.01), while IGFBP-4 (2.4 kb) levels were lower in skeletal muscle (21%, P<0.01). In the near-term group UCO fetuses, IGFBP-2 mRNA levels were greater in the placenta (39%, P<0.05). Thus, intermittent UCO as studied has a greater effect on the expression of genes encoding certain peptides of the fetal IGF system in selected tissues in preterm fetuses than that in near-term fetuses. Altered IGFBP-2 mRNA levels with reduced IGF-II mRNA levels in selected tissues may mediate changes in growth and/or differentiation that might become apparent if the length of the UCO study were extended.

Free access
DJ Hill
Search for other papers by DJ Hill in
Google Scholar
PubMed
Close
,
J Hogg
Search for other papers by J Hogg in
Google Scholar
PubMed
Close
,
J Petrik
Search for other papers by J Petrik in
Google Scholar
PubMed
Close
,
E Arany
Search for other papers by E Arany in
Google Scholar
PubMed
Close
, and
VK Han
Search for other papers by VK Han in
Google Scholar
PubMed
Close

To determine the role of insulin-like growth factors (IGFs) and their binding proteins (IGFBPs) in the development of the pancreas, and specifically of the islets of Langerhans, we have examined the cellular distribution and developmental changes in the expression of IGFs and IGFBPs in the pancreas of the fetal and neonatal rat between 19.5 days of gestation and postnatal day 28. This represents a period of substantial growth and restructuring of the beta cell component in islets of this species. IGF-I, IGF-II, and IGFBPs-1 to -6 mRNAs were localized by in situ hybridization, and peptides by immunohistochemistry, in histological sections. IGF-II mRNA was highly expressed in islet cells and some ductal epithelial cells in late fetal and early neonatal life, but was barely detectable by postnatal day 28. IGF-II peptide showed a similar distribution. IGF-I mRNA was barely detected in the fetus or neonate and was localized predominantly in the ductal and acinar tissues after postnatal day 7. IGF-I immunoreactivity was associated with some islet cells in the fetus and neonate, suggesting an endocrine rather than a paracrine source. We performed co-localization studies to assess whether the distribution of IGFs within the pancreas might be due to a sequestration by locally produced IGFBPs. The presence of mRNAs for both IGFBPs-1 and -2 was minimal in the pancreas prior to postnatal day 7, although subsequently IGFBP-1 mRNA was seen in islet cells, while IGFBP-2 mRNA was localized in both islets and acinar tissues. In contrast, both IGFBPs-1 and -2 immunoreactivities were identified in islets from late fetal life, suggesting a circulatory source for these IGFBPs during early pancreatic development. IGFBPs-3 to -5 mRNAs and immunoreactivities were identified within islet cells throughout fetal and neonatal life, with IGFBPs-3 and -5 being mainly associated with the alpha cell-rich islet mantle. The results show a compartmentalization of IGFs within pancreatic tissue, reflecting both paracrine and endocrine sources. The localization and action of IGFs in pancreas likely involves sequestration and distribution by endogenous as well as circulating IGFBPs.

Free access
DJ Hill
Search for other papers by DJ Hill in
Google Scholar
PubMed
Close
,
J Petrik
Search for other papers by J Petrik in
Google Scholar
PubMed
Close
,
E Arany
Search for other papers by E Arany in
Google Scholar
PubMed
Close
,
TJ McDonald
Search for other papers by TJ McDonald in
Google Scholar
PubMed
Close
, and
TL Delovitch
Search for other papers by TL Delovitch in
Google Scholar
PubMed
Close

Interleukin-1beta (IL-1beta), tumour necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) contribute to the initial stages of the autoimmune destruction of pancreatic beta cells. IL-1beta is released by activated macrophages resident within islets, and its cytotoxic actions include a stimulation of nitric oxide (NO) production and the initiation of apoptosis. Insulin-like growth factors (IGFs)-I and -II prevent apoptosis in non-islet tissues. This study investigated whether IGFs are cytoprotective for isolated islets of Langerhans from non-obese diabetic mice (NOD) mice exposed to cytokines. Pancreatic islets isolated from 5-6-week-old, pre-diabetic female NOD mice were cultured for 48 h before exposure to IL-1beta (1 ng/ml), TNF-alpha (5 ng/ml), IFN-gamma (5 ng/ml) or IGF-I or -II (100 ng/ml) for a further 48 h. The incidence of islet cell apoptosis was increased in the presence of each cytokine, but this was significantly reversed in the presence of IGF-I or -II (IL-1beta control 3.5+/-1.6%, IL-1beta 1 ng/ml 27.1+/-5.8%, IL-1beta+IGF-I 100 ng/ml 4.4+/-2.3%, P<0.05). The majority of apoptotic cells demonstrated immunoreactive glucose transporter 2 (GLUT-2), suggesting that they were beta cells. Islet cell viability was also assessed by trypan blue exclusion. Results suggested that apoptosis was the predominant cause of cell death following exposure to each of the cytokines. Co-incubation with either IGF-I or -II was protective against the cytotoxic effects of IL-1beta and TNF-alpha, but less so against the effect of IFN-gamma. Exposure to cytokines also reduced insulin release, and this was not reversed by incubation with IGFs. Immunohistochemistry showed that IGF-I was present in vivo in islets from pre-diabetic NOD mice which did not demonstrate insulitis, but not in islets with extensive immune infiltration. Similar results were seen for IGF-binding proteins (IGFBPs). These results suggest that IGFs protect pre-diabetic NOD mouse islets from the cytotoxic actions of IL-1beta, TNF-alpha and IFN-gamma by mechanisms which include a reduction in apoptosis.

Free access
VA Patel
Search for other papers by VA Patel in
Google Scholar
PubMed
Close
,
DJ Hill
Search for other papers by DJ Hill in
Google Scholar
PubMed
Close
,
MC Sheppard
Search for other papers by MC Sheppard in
Google Scholar
PubMed
Close
,
F Wang
Search for other papers by F Wang in
Google Scholar
PubMed
Close
,
A Logan
Search for other papers by A Logan in
Google Scholar
PubMed
Close
, and
MC Eggo
Search for other papers by MC Eggo in
Google Scholar
PubMed
Close

Goitrogenesis is accompanied by hyperplasia and hypertrophy and involves tissue remodelling and angiogenesis. During the involution of the goitre there must be removal of this increased thyroid volume, in addition to further remodelling, which may involve apoptosis. We investigated apoptosis in the involuting rat thyroid using male Fisher rats that were on a goitrogenic regimen for 14 days and then returned to a normal diet. Thyroid weights increased fourfold with the goitrogenic regimen. During involution, the largest decrease in weight was between day 2 and day 4 after withdrawal of treatment. After 34 days of involution, the thyroid weight plateaued, but had not returned to control values. High levels of Bcl-2 immunoreactivity were observed in normal and goitrous rat thyroids. These high levels were significantly reduced at 2 days of involution, after which high levels of Bcl-2 immunoreactivity returned. In situ end-labelling of apoptotic cells showed that there was an increase in the number of cells undergoing DNA fragmentation during goitrogenesis (1.0+/-0.8 cells/100 cells, n=9) compared with controls, in which no positive staining was observed. After 2 days of goitrogen withdrawal, there was a further fourfold increase in the number of in situ end-labelled cells (day 16: 4.1+/-1.7, n=9). Numbers of positive cells returned to low levels after 4 days of involution (day 18: 0.3+/-0.8, n=9). Using antiserum to apoptosis-specific protein, we found increased immunoreactivity during goitrogenesis and after 2 days of involution that was localised predominantly with the stromal and vascular tissue at both time points. The data show that rapid downregulation of Bcl-2 accompanies thyroid involution, which involves increased levels of apoptosis within the stromal compartment.

Free access
A Ilieva
Search for other papers by A Ilieva in
Google Scholar
PubMed
Close
,
S Yuan
Search for other papers by S Yuan in
Google Scholar
PubMed
Close
,
RN Wang
Search for other papers by RN Wang in
Google Scholar
PubMed
Close
,
D Agapitos
Search for other papers by D Agapitos in
Google Scholar
PubMed
Close
,
DJ Hill
Search for other papers by DJ Hill in
Google Scholar
PubMed
Close
, and
L Rosenberg
Search for other papers by L Rosenberg in
Google Scholar
PubMed
Close

The purpose of this study was to characterize the trophic effect of pancreatic duct cells on the islets of Langerhans. Ductal epithelium and islets were isolated from hamster pancreata. In addition, duct-conditioned medium (DCM) was prepared from primary duct cultures that had been passaged twice to remove other cellular elements. Three experimental groups were then established: Group 1, 100 islets alone; Group 2, 100 islets+80 duct fragments; and Group 3, 100 islets in 25% DCM. All tissues were embedded in rat tail collagen for up to 12 days and the influence of pancreatic ductal epithelium on islet cell survival was examined. By day 12, 20.6+/-3. 0% (S.E.M.) of the islets cultured alone developed central necrosis, compared with 6.7+/-2.0% of the islets co-cultured with ducts and 5.6+/-1.5% of the islets cultured in DCM (P<0.05). The presence of apoptotic cell death was determined by a TdT-mediated dUTP-biotin nick end labelling (TUNEL) assay and by a specific cell death ELISA. DNA fragmentation in islets cultured alone was significantly increased compared with islets cultured either in the presence of duct epithelium or in DCM (P<0.05). More than 80% of TUNEL-positive cells were situated in the inner 80% of the islet area, suggesting that most were beta-cells. DCM was analysed for known growth factors. The presence of a large amount of IGF-II (34 ng/ml) and a much smaller quantity of nerve growth factor (4 ng/ml) was identified. When the apoptosis studies were repeated to compare islets alone, islets+DCM and islets+IGF-II, the cell death ELISA indicated that IGF-II produced the same beneficial result as DCM when compared with islets cultured alone. We conclude that pancreatic ductal epithelium promotes islet cell survival. This effect appears to be mediated in a paracrine manner by the release of IGF-II from cells in the ductal epithelium.

Free access
M Tucci
Search for other papers by M Tucci in
Google Scholar
PubMed
Close
,
K Nygard
Search for other papers by K Nygard in
Google Scholar
PubMed
Close
,
BV Tanswell
Search for other papers by BV Tanswell in
Google Scholar
PubMed
Close
,
HW Farber
Search for other papers by HW Farber in
Google Scholar
PubMed
Close
,
DJ Hill
Search for other papers by DJ Hill in
Google Scholar
PubMed
Close
, and
VK Han
Search for other papers by VK Han in
Google Scholar
PubMed
Close

Endothelial cells (EC) are hypoxia-tolerant and their capacity to proliferate in low oxygen tension is essential to maintain vascular endothelium integrity. The present study addresses whether hypoxia alters the expression of insulin-like growth factor (IGF) and IGF binding protein (IGFBP) genes in bovine aortic EC (BAEC) and bovine pulmonary artery EC (BPAEC). EC were cultured in normoxic (21%) conditions and exposed to 0% oxygen for 24, 48, or 72 h; some cells were reoxygenated by exposure to 21% oxygen for 24 or 48 h following hypoxia. IGF-I peptide and mRNA levels were very low in both cell types, and decreased further with exposure to hypoxia. Ligand blotting showed that both cell types synthesized 24 kDa (IGFBP-4), 30 kDa (IGFBP-5 and/or IGFBP-6), 43 kDa and 48 kDa IGFBPs (IGFBP-3 glycosylation variants). IGFBP-4 was the predominant IGFBP expressed by both cell types and did not change with exposure to hypoxia. Hypoxia caused a significant increase in IGFBP-3 secretion in BPAEC but not in BAEC. IGFBP-3 stable mRNA levels in BPAEC were increased correspondingly. IGFBP-5 was expressed only in BAEC and decreased with exposure to hypoxia. IGFBP-6 mRNA expression was low and increased in both cell types with exposure to hypoxia. These results demonstrate that EC IGFBP baseline expression as well as its expression in hypoxia vary in different vascular beds and suggest that the IGFBPs may be the dominant paracrine regulators of proliferation of EC as well as maintenance of endothelium integrity during hypoxia.

Free access
JF Wang
Search for other papers by JF Wang in
Google Scholar
PubMed
Close
,
V Milosveski
Search for other papers by V Milosveski in
Google Scholar
PubMed
Close
,
C Schramek
Search for other papers by C Schramek in
Google Scholar
PubMed
Close
,
GH Fong
Search for other papers by GH Fong in
Google Scholar
PubMed
Close
,
GP Becks
Search for other papers by GP Becks in
Google Scholar
PubMed
Close
, and
DJ Hill
Search for other papers by DJ Hill in
Google Scholar
PubMed
Close

Angiogenesis is an important component in the development of thyroid goitre. Vascular endothelial growth factor (VEGF) represents a family of specific endothelial cell mitogens involved in normal angiogenesis and in tumour development. The purpose of this study was to determine the distribution of VEGF in thyroid tissues during goitre formation, and to study the actions of VEGF on the regulation of thymidine incorporation and iodine uptake by thyroid follicular cells. Goitre was induced in adult rats by administration of methimazole together with a low iodine diet. Thyroid from normal or goitrous rats was removed, fixed and sectioned. Immunocytochemistry performed for VEGF using the avidin-biotin system showed that VEGF is present in normal thyroid and is located mainly in the vascular endothelium and interfollicular stromal tissue. After administration of goitrogen for 2 weeks, which caused a two- to threefold increase in thyroid weight, staining of VEGF was less apparent within the interfollicular stroma, but strongly increased throughout the thyroid follicular and endothelial cells. Uptake of [125I] and incorporation of [3H]thymidine by Fisher rat thyroid cells (FRTL-5) were measured after 72 h culture with or without TSH or VEGF, or both. In the absence of TSH, incubation with VEGF caused a significant reduction in [3H]thymidine incorporation, but did not significantly alter [125I] uptake. Incubation with TSH (1 mU/ml) caused a fourfold increase in [3H]thymidine incorporation that was diminished by co-incubation with 10 ng/ml or greater VEGF. Similarly, 10 ng/ml or greater VEGF significantly reduced the ability of TSH to increase [125I] uptake. The antagonistic effects of VEGF on TSH-stimulated [3H]thymidine incorporation or [125I] uptake were significantly reduced in the presence of an anti-VEGF antiserum. A DNA fragment representing mRNA encoding the VEGF receptor, flt-1, was identified in FRTL-5 cells by reverse transcription PCR analysis, and the abundance of this fragment was increased in FRTL-5 cells cultured in the medium containing TSH (1 mU/ml) or fibroblast growth factor (FGF)-2 (25 ng/ml). These results indicated that VEGF and one of its receptors, Flt-1, are present in epithelial cells of the thyroid, and that VEGF could contribute to the regulation of development and function of thyroid epithelial cells.

Free access