Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Dan Wang x
Clear All Modify Search
Free access

Jing Li, Pan-Pan Zhao, Ting Hao, Dan Wang, Yu Wang, Yang-Zi Zhu, Yu-Qing Wu and Cheng-Hua Zhou

Urotensin II (U-II), a cyclic peptide originally isolated from the caudal neurosecretory system of fishes, can produce proinflammatory effects through its specific G protein-coupled receptor, GPR14. Neuropathic pain, a devastating disease, is related to excessive inflammation in the spinal dorsal horn. However, the relationship between U-II and neuropathic pain has not been reported. This study was designed to investigate the effect of U-II antagonist on neuropathic pain and to understand the associated mechanisms. We reported that U-II and its receptor GPR14 were persistently upregulated and activated in the dorsal horn of L4–6 spinal cord segments after chronic constriction injury (CCI) in rats. Intrathecal injection of SB657510, a specific antagonist against U-II, reversed CCI-induced thermal hyperalgesia and mechanical allodynia. Furthermore, we found that SB657510 reduced the expression of phosphorylated c-Jun N-terminal kinase (p-JNK) and nuclear factor-κB (NF-κB) p65 as well as subsequent secretion of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). It was also showed that both the JNK inhibitor SP600125 and the NF-κB inhibitor PDTC significantly attenuated thermal hyperalgesia and mechanical allodynia in CCI rats. Our present research showed that U-II receptor antagonist alleviated neuropathic pain possibly through the suppression of the JNK/NF-κB pathway in CCI rats, which will contribute to the better understanding of function of U-II and pathogenesis of neuropathic pain.

Free access

Yunshuang Yue, Yi Wang, Dan Li, Zhigang Song, Hongchao Jiao and Hai Lin

Bacterial lipopolysaccharide (LPS), also known as endotoxin, induces profound anorexia. However, the LPS-provoked pro-inflammatory signaling cascades and the neural mechanisms underlying the development of anorexia are not clear. Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. This study aimed to determine whether the mTOR pathway is involved in LPS-induced anorexia. Effects of LPS on hypothalamic gene/protein expression in mice were measured by RT-PCR or western blotting analysis. To determine whether inhibition of mTOR signaling could attenuate LPS-induced anorexia, we administered an i.c.v. injection of rapamycin, an mTOR inhibitor, on LPS-treated male mice. In this study, we showed that LPS stimulates the mTOR signaling pathway through the enhanced phosphorylation of mTORSer2448 and p70S6KThr389. We also showed that LPS administration increased the phosphorylation of FOXO1Ser256, the p65 subunit of nuclear factor kappa B (P<0.05), and FOXO1/3aThr 24 / 32 (P<0.01). Blocking the mTOR pathway significantly attenuated the LPS-induced anorexia by decreasing the phosphorylation of p70S6KThr389, FOXO1Ser256, and FOXO1/3aThr 24 / 32. These results suggest promising approaches for the prevention and treatment of LPS-induced anorexia.

Restricted access

Dan Wang, Chu-Dan Liu, Meng-Li Tian, Cheng-Quan Tan, Gang Shu, Qing-Yan Jiang, Lin Zhang and Yu-Long Yin

Dietary fibers and their microbial fermentation products short-chain fatty acids promote metabolic benefits, but the underlying mechanisms are still unclear. Recent studies indicate that intestinal lipid handling is under regulatory control and has broad influence on whole body energy homeostasis. Here we reported that dietary inulin and propionate significantly decreased whole body fat mass without affecting food intake in mice fed with chow diet. Meanwhile, triglyceride (TG) content was decreased and lipolysis gene expression, such as adipose triglyceride lipase (A tgl), hormone-sensitive lipase (H sl) and lysosomal acid lipase (L al) was elevated in the jejunum and ileum of inulin- and propionate-treated mice. In vitro studies on Caco-2 cells showed propionate directly induced enterocyte Atgl, Hsl and Lal gene expression and decreased TG content, via activation of phosphorylation of AMP-activated protein kinase (p-AMPK) and lysine-specific demethylase 1 (LSD1). Moreover, inulin and propionate could increase intestinal lipolysis under high-fat diet (HFD)-fed condition which contributed to the prevention of HFD-induced obesity. Our study suggests that dietary fiber inulin and its microbial fermentation product propionate can regulate metabolic homeostasis through regulating intestinal lipid handling, which may provide a novel therapeutic target for both prevention and treatment of obesity.

Restricted access

Yuan Ni, Dan Xu, Feng Lv, Yang Wan, Guanlan Fan, Wen Zou, Yunxi Chen, Linguo Pei, Jing Yang and Hui Wang

Prenatal ethanol exposure (PEE) adversely affects the offspring reproductive system. We aimed to confirm the susceptibility to premature ovarian insufficiency (POI) in female PEE offspring and elucidate its intrauterine programming mechanism. The pregnant Wistar female rats were intragastrically administered with 4 g/kg × day of ethanol from gestational day (GD) 9 to 20. Offspring reproductive parameters were detected on GD20, postnatal week (PW) 6 and PW12. The PEE foetuses showed a decreased number of oocytes, increased ovarian cell apoptosis and upregulated expression levels of ovarian insulin-like growth factor 1 (IGF1) signalling pathway and steroidogenic enzymes. The proportion of atretic follicles in adult rats was increased, while the number of anti-Müllerian hormone-positive antral follicles was decreased. The serum oestradiol (E2) levels were decreased, but the follicle stimulation hormone levels were elevated. The ovarian Igf1 signalling pathway was transformed from activation during puberty to relative inhibition in adulthood, and the expression levels of ovarian steroidogenic enzymes were inhibited in adulthood. Furthermore, we treated the human granulosa cell line KGN with different ethanol concentrations (15, 30, 60, 120 mM) and found that the expression of IGF1 signalling pathway components, 3β-HSD and P450arom, as well as the production of E2, was increased. After IGF1 siRNA transfection, P450arom expression and E2 production were downregulated. These results suggest that PEE induces POI susceptibility in adult females, which may be caused by over-activation of the foetal ovarian Igf1 signalling pathway and steroidogenesis under PEE, resulting in accelerated early development of folliculogenesis and depletion of primordial follicles.