Search Results
You are looking at 1 - 1 of 1 items for
- Author: Dana Bornancini x
- Refine by access: All content x
Search for other papers by Alejandra Abeledo-Machado in
Google Scholar
PubMed
Search for other papers by Dana Bornancini in
Google Scholar
PubMed
Search for other papers by Milagros Peña-Zanoni in
Google Scholar
PubMed
Search for other papers by María Andrea Camilletti in
Google Scholar
PubMed
Search for other papers by Erika Yanil Faraoni in
Google Scholar
PubMed
Search for other papers by Graciela Díaz-Torga in
Google Scholar
PubMed
Serum prolactin increases from birth to adulthood in rats, being higher in females from birth. The maturation of hypothalamic/gonadal prolactin-releasing and -inhibiting factors does not explain some sex differences observed. During the first weeks of life, prolactin secretion increases, even when lactotrophs are isolated in vitro, in the absence of those controls, suggesting the participation of intra-pituitary factors in this control. The present work aimed to study the involvement of pituitary activins in the regulation of prolactin secretion during post-natal development. Sex differences were also highlighted. Female and male Sprague–Dawley rats at 11, 23 and 45postnatal days were used. Pituitary expression of activin subunits and activin receptors was maximum in p11 female pituitaries, being even higher than that observed in males. Those expressions decrease with age in females, and then the gender differences disappear at p23. Inhbb expression strongly increases at p45 in males, being the predominant subunit in this sex in adulthood. Activin inhibition of prolactin is mediated by the inhibition of Pit-1 expression. This action involves not only the canonical pSMAD pathway but also the phosphorylation of p38MAPK. At p11, almost all lactotrophs express p-p38MAPK in females, and its expression decreases with age with a concomitant increase in Pit-1. Our findings suggest that the inhibitory regulation of pituitary activins on prolactin secretion is sex specific; this regulation is more relevant in females during the first week of life and decreases with age; this intra-pituitary regulation is involved in the sex differences observed in serum prolactin levels during postnatal development.