Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Daniel J Bernard x
Clear All Modify Search
Free access

Xiang Zhou, Ying Wang, Luisina Ongaro, Ulrich Boehm, Vesa Kaartinen, Yuji Mishina and Daniel J Bernard

Pituitary follicle-stimulating hormone (FSH) synthesis is regulated by transforming growth factorβsuperfamily ligands, most notably the activins and inhibins. Bone morphogenetic proteins (BMPs) also regulate FSHβ subunit (Fshb) expression in immortalized murine gonadotrope-like LβT2 cells and in primary murine or ovine primary pituitary cultures. BMP2 signals preferentially via the BMP type I receptor, BMPR1A, to stimulate murine Fshb transcription in vitro. Here, we used a Cre–lox approach to assess BMPR1A’s role in FSH synthesis in mice in vivo. Gonadotrope-specific Bmpr1a knockout animals developed normally and had reproductive organ weights comparable with those of controls. Knockouts were fertile, with normal serum gonadotropins and pituitary gonadotropin subunit mRNA expression. Cre-mediated recombination of the floxed Bmpr1a allele was efficient and specific, as indicated by PCR analysis of diverse tissues and isolated gonadotrope cells. Furthermore, BMP2 stimulation of inhibitor of DNA binding 3 expression was impaired in gonadotropes isolated from Bmpr1a knockout mice, confirming the loss of functional receptor protein in these cells. Treatment of purified gonadotropes with small-molecule inhibitors of BMPR1A (and the related receptors BMPR1B and ACVR1) suppressed Fshb mRNA expression, suggesting that an autocrine BMP-like molecule might regulate FSH synthesis. However, deletion of Bmpr1a and Acvr1 in cultured pituitary cells did not alter Fshb expression, indicating that the inhibitors had off-target effects. In sum, BMPs or related ligands acting via BMPR1A or ACVR1 are unlikely to play direct physiological roles in FSH synthesis by murine gonadotrope cells.

Free access

Yongmei Wang, Takeshi Sakata, Hashem Z Elalieh, Scott J Munson, Andrew Burghardt, Sharmila Majumdar, Bernard P Halloran and Daniel D Bikle

Parathyroid hormone (PTH) exerts both catabolic and anabolic actions on bone. Studies on the skeletal effects of PTH have seldom considered the effects of gender. Our study was designed to determine whether the response of mouse bone to PTH differed according to sex. As a first step, we analyzed gender differences with respect to bone mass and structural properties of 4 month old PTH treated (80 μg/kg per day for 2 weeks) male and female CD-1 mice. PTH significantly increased fat free weight/body weight, periosteal bone formation rate, mineral apposition rate, and endosteal single labeling surface, while significantly decreasing medullary area in male mice compared with vehicle treated controls, but induced no significant changes in female mice. We then analyzed the gender differences in bone marrow stromal cells (BMSC) isolated from 4 month old male and female CD-1 mice following treatment with PTH (80 μg/kg per day for 2 weeks). PTH significantly increased the osteogenic colony number and the alkaline phosphatase (ALP) activity (ALP/cell) by day 14 in cultures of BMSCs from male and female mice. PTH also increased the mRNA level of receptor activator of nuclear factor κB ligand in the bone tissue (marrow removed) of both females and males. However, PTH increased the mRNA levels of IGF-I and IGF-IR only in the bones of male mice. Our results indicate that on balance a 2-weeks course of PTH is anabolic on cortical bone in this mouse strain. These effects are more evident in the male mouse. These differences between male and female mice may reflect the greater response to PTH of IGF-I and IGF-IR gene expression in males enhancing the anabolic effect on cortical bone.

Free access

Beata Bak, Laura Carpio, Jinjing L Kipp, Pankaj Lamba, Ying Wang, Ren-Shan Ge, Matthew P Hardy, Kelly E Mayo and Daniel J Bernard

Activins are pleiotropic members of the TGFβ superfamily and were initially characterized based on their abilities to stimulate FSH synthesis and secretion by gonadotrope cells of the anterior pituitary gland. Here, we identified the gene encoding the steroidogenic enzyme, 17β-hydroxysteroid dehydrogenase type I (17β-HSD1; Hsd17b1), as an activin-responsive gene in immortalized gonadotrope cells, LβT2. 17β-HSD1 catalyzes the conversion of estrone to the more active 17β-estradiol, and activin A stimulated an increase in this enzymatic activity in these cells. We demonstrated that activins signaled via the type I receptor, activin receptor-like kinase (ALK4), and the intracellular signaling protein, SMAD2, to regulate Hsd17b1 transcription in immediate-early fashion. Critical cis-elements, including a minimal SMAD-binding element, were mapped to within 100 bp of the start of transcription. Activin/ALK4 signaling also regulated Hsd17b1 transcription in both immortalized and primary cultured murine granulosa cells. The promoter regions mediating basal and activin/ALK4-regulated promoter activity were generally conserved across the different cell types. The data show that activin A rapidly regulates Hsd17b1 transcription in gonadotrope and granulosa cells and may thereby regulate local 17β-estradiol synthesis.

Restricted access

Chirine Toufaily, Gauthier Schang, Xiang Zhou, Philipp Wartenberg, Ulrich Boehm, John P Lydon, Ferdinand Roelfsema and Daniel J Bernard

The progesterone receptor (PR, encoded by Pgr) plays essential roles in reproduction. Female mice lacking the PR are infertile, due to the loss of the protein’s functions in the brain, ovary, and uterus. PR is also expressed in pituitary gonadotrope cells, but its specific role therein has not been assessed in vivo. We therefore generated gonadotrope-specific Pgr conditional knockout mice (cKO) using the Cre-LoxP system. Overall, both female and male cKO mice appeared phenotypically normal. cKO females displayed regular estrous cycles (vaginal cytology) and normal fertility (litter size and frequency). Reproductive organ weights were comparable between wild-type and cKO mice of both sexes, as were production and secretion of the gonadotropins, LH and FSH, with one exception. On the afternoon of proestrus, the amplitude of the LH surge was blunted in cKO females relative to controls. Contrary to predictions of earlier models, this did not appear to derive from impaired GnRH self-priming. Collectively, these data indicate that PR function in gonadotropes may be limited to regulation of LH surge amplitude in female mice via a currently unknown mechanism.

Free access

Sjoerd D Joustra, Onno C Meijer, Charlotte A Heinen, Isabel M Mol, El Houari Laghmani, Rozemarijn M A Sengers, Gabriela Carreno, A S Paul van Trotsenburg, Nienke R Biermasz, Daniel J Bernard, Jan M Wit, Wilma Oostdijk, Ans M M van Pelt, Geert Hamer and Gerry T M Wagenaar

Loss-of-function mutations in the immunoglobulin superfamily member 1 (IGSF1) gene cause an X-linked syndrome of central hypothyroidism, macroorchidism, variable prolactin and GH deficiency, delayed pubertal testosterone rise, and obesity. To understand the pathophysiology of this syndrome, knowledge on IGSF1's place in normal development is imperative. Therefore, we investigated spatial and temporal protein and mRNA expression of IGSF1 in rats using immunohistochemistry, real-time quantitative PCR (qPCR), and in situ hybridization. We observed high levels of IGSF1 expression in the brain, specifically the embryonic and adult choroid plexus and hypothalamus (principally in glial cells), and in the pituitary gland (PIT1-lineage of GH, TSH, and PRL-producing cells). IGSF1 is also expressed in the embryonic and adult zona glomerulosa of the adrenal gland, islets of Langerhans of the pancreas, and costameres of the heart and skeletal muscle. IGSF1 is highly expressed in fetal liver, but is absent shortly after birth. In the adult testis, IGSF1 is present in Sertoli cells (epithelial stages XIII–VI), and elongating spermatids (stages X–XII). Specificity of protein expression was corroborated with Igsf1 mRNA expression in all tissues. The expression patterns of IGSF1 in the pituitary gland and testis are consistent with the pituitary hormone deficiencies and macroorchidism observed in patients with IGSF1 deficiency. The expression in the brain, adrenal gland, pancreas, liver, and muscle suggest IGSF1's function in endocrine physiology might be more extensive than previously considered.