Search Results
You are looking at 1 - 5 of 5 items for
- Author: Deshou Wang x
- Refine by access: All content x
Search for other papers by Hongjuan Shi in
Google Scholar
PubMed
Search for other papers by Tian Gao in
Google Scholar
PubMed
Search for other papers by Zhilong Liu in
Google Scholar
PubMed
Search for other papers by Lina Sun in
Google Scholar
PubMed
Search for other papers by Xiaolong Jiang in
Google Scholar
PubMed
Search for other papers by Lili Chen in
Google Scholar
PubMed
Search for other papers by Deshou Wang in
Google Scholar
PubMed
Induction of sex reversal of XY fish has been restricted to the sex undifferentiated period. In the present study, differentiated XY tilapia were treated with trilostane (TR), metopirone (MN) and glycyrrhetinic acid (GA) (inhibitor of 3β-HSD, Cyp11b2 and 11β-HSD, respectively) alone or in combination with 17β-estradiol (E2) from 30 to 90 dah (days after hatching). At 180 dah, E2 alone resulted in 8.3%, and TR, MN and GA alone resulted in no secondary sex reversal (SSR), whereas TR + E2, MN + E2 and GA + E2 resulted in 88.3, 60.0 and 46.7% of SSR, respectively. This sex reversal could be rescued by simultaneous administration of 11-ketotestosterone (11-KT). Compared with the control XY fish, decreased serum 11-KT and increased E2 level were detected in SSR fish. Immunohistochemistry analyses revealed that Cyp19a1a, Cyp11b2 and Dmrt1 were expressed in the gonads of GA + E2, MN + E2 and TR + E2 SSR XY fish at 90 dah, but only Cyp19a1a was expressed at 180 dah. When the treatment was applied from 60 to 120 dah, TR + E2 resulted in 3.3% of SSR, MN + E2 and GA + E2 resulted in no SSR. These results demonstrated that once 11-KT was synthesized, it could antagonize E2-induced male-to-female SSR, which could be abolished by simultaneous treatment with the inhibitor of steroidogenic enzymes. The upper the enzyme was located in the steroidogenic pathway, the higher SSR rate was achieved when it was inhibited as some of the precursors, such as androstenedione, testosterone and 5α-dihydrotestosterone, could act as androgens. These results highlight the key role of androgen in male sex maintenance.
Search for other papers by Lili Chen in
Google Scholar
PubMed
Search for other papers by Xiaolong Jiang in
Google Scholar
PubMed
Search for other papers by Haiwei Feng in
Google Scholar
PubMed
Search for other papers by Hongjuan Shi in
Google Scholar
PubMed
Search for other papers by Lina Sun in
Google Scholar
PubMed
Search for other papers by Wenjing Tao in
Google Scholar
PubMed
Search for other papers by Qingping Xie in
Google Scholar
PubMed
Search for other papers by Deshou Wang in
Google Scholar
PubMed
Estrogen, which is synthesized earlier in females than androgen in males, is critical for sex determination in non-mammalian vertebrates. However, it remains unknown that what would happen to the gonadal phenotype if estrogen and androgen were administrated simultaneously. In this study, XY and XX tilapia fry were treated with the same dose of 17α-methyltestosterone (MT) and 17β-estradiol (E2) alone and in combination from 0 to 30 days after hatching. Treatment of XY fish with E2 resulted in male to female sex reversal, while treatment of XX fish with MT resulted in female to male sex reversal. In contrast, simultaneous treatment of XX and XY fish with MT and E2 resulted in female, but with cyp11b2 and cyp19a1a co-expressed in the ovary. Serum 11-ketotestosteron level of the MT and E2 simultaneously treated XX and XY female was similar to that of the XY control, while serum E2 level of these two groups was similar to that of the XX control. Transcriptomic cluster analysis revealed that the MT and E2 treated XX and XY gonads clustered into the same branch with the XX control. However a small fraction of genes, which showed disordered expression, may be associated with stress response. These results demonstrated that estrogen could maintain the female phenotype of XX fish and feminize XY fish even in the presence of androgen. Simultaneous treatment with estrogen and androgen up-regulated the endogenous estrogen and androgen synthesis, and resulted in disordered gene expression and endocrine disruption in tilapia.
Search for other papers by Qiaoyuan Zheng in
Google Scholar
PubMed
Search for other papers by Hesheng Xiao in
Google Scholar
PubMed
Search for other papers by Hongjuan Shi in
Google Scholar
PubMed
Search for other papers by Tingru Wang in
Google Scholar
PubMed
Search for other papers by Lina Sun in
Google Scholar
PubMed
Search for other papers by Wenjing Tao in
Google Scholar
PubMed
Search for other papers by Thomas D Kocher in
Google Scholar
PubMed
Search for other papers by Minghui Li in
Google Scholar
PubMed
Search for other papers by Deshou Wang in
Google Scholar
PubMed
The impacts of androgens and glucocorticoids on spermatogenesis have intrigued scientists for decades. 11β-hydroxylase, encoded by cyp11c1, is the key enzyme involved in the synthesis of 11-ketotestosterone and cortisol, the major androgen and glucocorticoid in fish, respectively. In the present study, a Cyp11c1 antibody was produced. Western blot and immunohistochemistry showed that Cyp11c1 was predominantly expressed in the testicular Leydig cells and head kidney interrenal cells. A mutant line of cyp11c1 was established by CRISPR/Cas9. Homozygous mutation of cyp11c1 caused a sharp decrease of serum cortisol and 11-ketotestosterone, and a delay in spermatogenesis which could be rescued by exogenous 11-ketotestosterone or testosterone, but not cortisol treatment. Intriguingly, this spermatogenesis restored spontaneously, indicating compensatory effects of other androgenic steroids. In addition, loss of Cyp11c1 led to undersized testes with a smaller efferent duct and disordered spermatogenic cysts in adult males. However, a small amount of viable sperm was produced. Taken together, our results demonstrate that cyp11c1 is important for testicular development, especially for the initiation and proper progression of spermatogenesis. 11-ketotestosterone is the most efficient androgen in tilapia.
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Xigui Huang in
Google Scholar
PubMed
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Baowei Jiao in
Google Scholar
PubMed
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Chun Kit Fung in
Google Scholar
PubMed
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Yong Zhang in
Google Scholar
PubMed
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Walter K K Ho in
Google Scholar
PubMed
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Chi Bun Chan in
Google Scholar
PubMed
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Haoran Lin in
Google Scholar
PubMed
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Deshou Wang in
Google Scholar
PubMed
Department of Biochemistry and
The Environmental Science Programme, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
Search for other papers by Christopher H K Cheng in
Google Scholar
PubMed
Two prolactin receptors (PRLRs) encoded by two different genes were identified in the fugu and zebrafish genomes but not in the genomes of other vertebrates. Subsequently, two cDNA sequences corresponding to two PRLRs were identified in black seabream and Nile tilapia. Phylogenetic analysis of PRLR sequences in various vertebrates indicated that the coexistence of two PRLRs in a single species is a unique phenomenon in teleosts. Both PRLRs in teleosts (the classical one named as PRLR1, the newly identified one as PRLR2) resemble the long-form mammalian PRLRs. However, despite their overall structural similarities, the two PRLR subtypes in fish share very low amino acid similarities (about 30%), mainly due to differences in the intracellular domain. In particular, the Box 2 region and some intracellular tyrosine residues are missing in PRLR2. Tissue distribution study by real-time PCR in black seabream (sb) revealed that both receptors (sbPRLR1 and sbPRLR2) are widely expressed in different tissues. In gill, the expression level of sbPRLR2 is much higher than that of sbPRLR1. In the intestine, the expression of sbPRLR1 is higher than that of sbPRLR2. The expression levels of both receptors are relatively low in most other tissues, with sbPRLR1 generally higher than sbPRLR2. The sbPRLR1 and sbPRLR2 were functionally expressed in cultured human embryonic kidney 293 cells. Both receptors can activate the β-casein and c-fos promoters; however, only sbPRLR1 but not sbPRLR2 can activate the Spi promoter upon receptor stimulation in a ligand-specific manner. These results indicate that both receptors share some common functions but are distinctly different from each other in mobilizing post-receptor events. When challenged with different steroid hormones, the two PRLRs exhibited very different gene expression patterns in the seabream kidney. The sbPRLR1 expression was up-regulated by estradiol and cortisol, whereas testosterone had no significant effect. For sbPRLR2, its expression was down-regulated by estradiol and testosterone, while cortisol exerted no significant effect. The 5′-flanking regions of the sbPRLR1 and sbPRLR2 genes were cloned and the promoter activities were studied in transfected GAKS cells in the absence or presence of different steroid hormones. The results of the promoter studies were in general agreement with the in vivo hormonal regulation of gene expression results. The sbPRLR1 gene promoter activity was activated by estradiol and cortisol, but not by testosterone. In contrast, the sbPRLR2 gene promoter activity was inhibited by estradiol, cortisol, and testosterone.
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Zhihao Liu in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Fengrui Wu in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Baowei Jiao in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Xiuyue Zhang in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Chongjiang Hu in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Baofeng Huang in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Linyan Zhou in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Xigui Huang in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Zhijian Wang in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Yaoguang Zhang in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Yoshitaka Nagahama in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Christopher H K Cheng in
Google Scholar
PubMed
Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
Department of Biochemistry and the Environmental Science Programme, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
Search for other papers by Deshou Wang in
Google Scholar
PubMed
To address the roles of doublesex and mab-3-related transcription factor 1 (Dmrt1), forkhead transcription factor gene 2 (Foxl2), and aromatase in sex differentiation of Southern catfish, the cDNA sequences of these genes were isolated from the gonads. Dmrt1a and Dmrt1b were found to be expressed in the gonads, being higher in the testis. A low expression level of Dmrt1b was also detected in the intestine and kidney of the male. Foxl2 was found to be expressed extensively in the brain (B), pituitary (P), gill and gonads (G), with the highest level in the ovary, indicating the possible involvement of Foxl2 in the B–P–G axis. Cytochrome P450 (Cyp)19b was found to be expressed in the brain, spleen, and gonads, while Cyp19a was only expressed in the gonads and spleen. All-female Southern catfish fry were treated with fadrozole (F), tamoxifen (TAM), and 17β-estradiol (E2) respectively, from 5 to 25 days after hatching (dah). The expression levels of these genes were measured at 65 dah. In the F-, TAM-, and FTAM-treated groups, Dmrt1a and Dmrt1b were up-regulated in the gonad, whereas Foxl2 and Cyp19a were down-regulated, while the expression of Cyp19b in the gonad remained unchanged. Furthermore, down-regulation of Foxl2 and Cyp19b was also detected in the brain. In the E2-treated group, Dmrt1a and Dmrt1b were down-regulated to an undetectable level in the gonad, whereas Foxl2 and Cyp19b were up-regulated in the brain. Consistent with the observed changes in the expressions of these genes, 56, 70, and 80% sex-reversed male individuals were obtained in the F-, TAM-, and F + TAM-treated groups respectively. These results indicate the significant roles of Dmrt1, Foxl2, and Cyp19 in the sex differentiation of Southern catfish.