Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Diego Safian x
  • Refine by access: All content x
Clear All Modify Search
Diego Safian Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands

Search for other papers by Diego Safian in
Google Scholar
PubMed
Close
,
Jan Bogerd Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands

Search for other papers by Jan Bogerd in
Google Scholar
PubMed
Close
, and
Rüdiger W Schulz Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology , Faculty of Science, University of Utrecht, Utrecht, The Netherlands
Reproduction and Developmental Biology Group, Institute of Marine Research, Nordnes, Bergen, Norway

Search for other papers by Rüdiger W Schulz in
Google Scholar
PubMed
Close

Follicle-stimulating hormone (Fsh) is a major regulator of spermatogenesis, targeting somatic cell functions in the testes. We reported previously that zebrafish Fsh promoted the differentiation of type A undifferentiated spermatogonia (Aund) by stimulating the production of factors that advance germ cell differentiation, such as androgens, insulin-like peptide 3 (Insl3) and insulin-like growth factor 3 (Igf3). In addition, Fsh also modulated the transcript levels of several other genes, including some belonging to the Wnt signaling pathway. Here, we evaluated if and how Fsh utilizes part of the canonical Wnt pathway to regulate the development of spermatogonia. We quantified the proliferation activity and relative section areas occupied by Aund and type A differentiating (Adiff) spermatogonia and we analyzed the expression of selected genes in response to recombinant proteins and pharmacological inhibitors. We found that from the three downstream mediators of Fsh activity we examined, Igf3, but not 11-ketotestosterone or Insl3, modulated the transcript levels of two β-catenin sensitive genes (cyclinD1 and axin2). Using a zebrafish β-catenin signaling reporter line, we showed that Igf3 activated β-catenin signaling in type A spermatogonia and that this activation did not depend on the release of Wnt ligands. Pharmacological inhibition of the β-catenin or of the phosphoinositide 3-kinase (PI3K) pathways revealed that Igf3 activated β-catenin signaling in a manner involving PI3K to promote the differentiation of Aund to Adiff spermatogonia. This mechanism represents an intriguing example for a pituitary hormone like Fsh using Igf signaling to recruit the evolutionary conserved, local β-catenin signaling pathway to regulate spermatogenesis.

Free access
Diego Safian Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands

Search for other papers by Diego Safian in
Google Scholar
PubMed
Close
,
Najoua Ryane Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands

Search for other papers by Najoua Ryane in
Google Scholar
PubMed
Close
,
Jan Bogerd Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands

Search for other papers by Jan Bogerd in
Google Scholar
PubMed
Close
, and
Rüdiger W Schulz Reproductive Biology Group, Division Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Faculty of Science, University of Utrecht, NL-3584 CH Utrecht, The Netherlands
Reproduction and Developmental Biology Group, Institute of Marine Research, Nordnes, Bergen, Norway

Search for other papers by Rüdiger W Schulz in
Google Scholar
PubMed
Close

Follicle-stimulating hormone (Fsh) modulates vertebrate spermatogenesis by regulating somatic cell functions in the testis. We have found previously that zebrafish Fsh stimulated the differentiating proliferation of type A undifferentiated spermatogonia (Aund) in an androgen-independent manner by regulating the production of growth factors and other signaling molecules in both Sertoli (SCs) and Leydig cells (LCs). For example, Fsh triggered the release of Igf3 that subsequently activated β-catenin signaling to promote the differentiating proliferation of Aund. In the present study, we report that Fsh moreover uses the non-canonical Wnt pathway to promote the proliferation and accumulation of Aund. Initially, we found that the stimulatory effect of Fsh on the proliferation activity of Aund was further strengthened when β-catenin signaling was inhibited, resulting in an accumulation of Aund. We then showed that this Fsh-induced accumulation of Aund was associated with increased transcript levels of the non-canonical Wnt ligand, wnt5a. In situ hybridization of insl3 mRNA, a gene expressed in LCs, combined with Wnt5a immunocytochemistry identified LCs as the cellular source of Wnt5a in the adult zebrafish testis. Addition of an antagonist of Wnt5a to incubations with Fsh decreased both the proliferation activity and the relative section area occupied by Aund, while an agonist of Wnt5a increased these same parameters for Aund. Taken together, our data suggest that Fsh triggered LCs to release Wnt5a, which then promoted the proliferation and accumulation of Aund. Hence, Fsh uses non-canonical Wnt signaling to ensure the production of Aund, while also triggering β-catenin signaling via Igf3 to ensure spermatogonial differentiation.

Restricted access
Diego Safian Laboratorio de Biotecnologia Molecular, Departmento de Ciencias Biologicas, Facultad de Biologia, Universidad Andres Bello, Avenida Republica 217, 8370146 Santiago, Chile

Search for other papers by Diego Safian in
Google Scholar
PubMed
Close
,
Eduardo N Fuentes Laboratorio de Biotecnologia Molecular, Departmento de Ciencias Biologicas, Facultad de Biologia, Universidad Andres Bello, Avenida Republica 217, 8370146 Santiago, Chile

Search for other papers by Eduardo N Fuentes in
Google Scholar
PubMed
Close
,
Juan Antonio Valdés Laboratorio de Biotecnologia Molecular, Departmento de Ciencias Biologicas, Facultad de Biologia, Universidad Andres Bello, Avenida Republica 217, 8370146 Santiago, Chile

Search for other papers by Juan Antonio Valdés in
Google Scholar
PubMed
Close
, and
Alfredo Molina Laboratorio de Biotecnologia Molecular, Departmento de Ciencias Biologicas, Facultad de Biologia, Universidad Andres Bello, Avenida Republica 217, 8370146 Santiago, Chile

Search for other papers by Alfredo Molina in
Google Scholar
PubMed
Close

The IGF-binding proteins (IGFBPs) play a dual role in the regulation of the activity and bioavailability of IGFs in different tissues. Diverse evidence has shown that IGFBPs can inhibit and/or potentiate IGF actions. In this study, igfbp1, 2, 3, 4, 5, and 6 were isolated in the fine flounder, a flat fish species that shows slow growth and inherent Gh resistance in muscle. Subsequently, the expression of all igfbps was assessed in the skeletal muscle of flounder that underwent different nutritional statuses. igfbp1 was not expressed in muscle during any of the nutritional conditions, whereas igfbp3 and igfbp5 were the lowest and the highest igfbps expressed respectively. A dynamic expression pattern was found in all the igfbps expressed in skeletal muscle, which depended on the nutritional status and sampling period. During the fasting period, igfbp2, 4, and 5 were downregulated, whereas igfbp3 was upregulated during part of the fasting period. The restoration of food modulated the expression of the igfbps dynamically, showing significant changes during both the long- and short-term refeeding. igfbp3 and igfbp6 were downregulated during short-term refeeding, whereas igfbp5 was upregulated, and igfbp2 and igfbp4 remained stable. During long-term refeeding, the expression of igfbp2, 4, 5, and 6 increased, while igfbp3 remained unchanged. In conclusion, this study shows for the first time the isolation of all igfbps in a single fish species, in addition to describing a dynamic nutritional and time-dependent response in the expression of igfbps in the skeletal muscle of a nonmammalian species.

Free access
Diego Crespo Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands

Search for other papers by Diego Crespo in
Google Scholar
PubMed
Close
,
Moline Severino Lemos Laboratory of Cell Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Search for other papers by Moline Severino Lemos in
Google Scholar
PubMed
Close
,
Yu Ting Zhang State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, People’s Republic of China
Institute of Oceanography, Minjiang University, Fuzhou, People’s Republic of China

Search for other papers by Yu Ting Zhang in
Google Scholar
PubMed
Close
,
Diego Safian Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands

Search for other papers by Diego Safian in
Google Scholar
PubMed
Close
,
Birgitta Norberg Institute of Marine Research, Austevoll Research Station, Storebø, Norway

Search for other papers by Birgitta Norberg in
Google Scholar
PubMed
Close
,
Jan Bogerd Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands

Search for other papers by Jan Bogerd in
Google Scholar
PubMed
Close
, and
Rüdiger W Schulz Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, The Netherlands
Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway

Search for other papers by Rüdiger W Schulz in
Google Scholar
PubMed
Close

Changes in zebrafish testicular gene expression induced by follicle-stimulating hormone (Fsh) or anti-Mullerian hormone (Amh) suggested that Amh inhibition and Fsh stimulation of spermatogenesis involved up and downregulation, respectively, of prostaglandin (PG) signaling. We found that Sertoli cells contacting type A undifferentiated (Aund) and differentiating (Adiff) spermatogonia expressed a key enzyme of PG production (Ptgs2); previous work showed that Sertoli cells contacting Adiff and B spermatogonia and spermatocytes showed ptges3b expression, an enzyme catalyzing PGE2 production. In primary testis tissue cultures, PGE2, but not PGD2 or PGF, reduced the mitotic activity of Adiff and their development into B spermatogonia. Vice versa, inhibiting PG production increased the mitotic activity of Adiff and B spermatogonia. Studies with pharmacological PG receptor antagonists suggest that an Ep4 receptor mediates the inhibitory effects on the development of spermatogonia, and cell-sorting experiments indicated this receptor is expressed mainly by testicular somatic cells. Combined inhibition of PG and steroid production moreover reduced the mitotic activity of Aund spermatogonia and led to their partial depletion, suggesting that androgens (and/or other testicular steroids), supported by PGE2, otherwise prevent depletion of Aund. Androgens also decreased testicular PGE2 production, increased the transcript levels of the enzyme-catabolizing PGs and decreased PGE2 receptor ptger4b transcript levels. Also Fsh potentially reduced, independent of androgens, PGE2 production by decreasing ptges3b transcript levels. Taken together, our results indicate that PGE2, via Ep4 receptors, favors self-renewal in conjunction with androgens and, independent of Fsh and androgens, inhibits differentiating divisions of spermatogonia.

Restricted access