Search Results
You are looking at 1 - 1 of 1 items for
- Author: Erik de Vrieze x
- Refine by access: All content x
Search for other papers by Marnix Gorissen in
Google Scholar
PubMed
Search for other papers by Erik de Vrieze in
Google Scholar
PubMed
Search for other papers by Gert Flik in
Google Scholar
PubMed
Department of Organismal Animal Physiology, The Clayton Foundation Laboratories for Peptide Biology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
Search for other papers by Mark O Huising in
Google Scholar
PubMed
We identified orthologues of all mammalian Janus kinase (JAK) and signal transducer and activator of transcription (STAT) genes in teleostean fishes, indicating that these protein families were already largely complete before the teleost tetrapod split, 450 million years ago. In mammals, the STAT repertoire consists of seven genes (STAT1, -2, -3, -4, -5a, -5b, and -6). Our phylogenetic analyses show that STAT proteins that are recruited downstream of endocrine hormones (STAT3 and STAT5a and -5b) show a markedly higher primary sequence conservation compared with STATs that convey immune signals (STAT1-2, STAT4, and STAT6). A similar dichotomy in evolutionary conservation is observed for the JAK family of protein kinases, which activate STATs. The ligands to activate the JAK/STAT-signalling pathway include hormones and cytokines such as GH, prolactin, interleukin 6 (IL6) and IL12. In this paper, we examine the evolutionary forces that have acted on JAK/STAT signalling in the endocrine and immune systems and discuss the reasons why the JAK/STAT cascade that conveys classical immune signals has diverged much faster compared with endocrine JAK/STAT paralogues.