Search Results

You are looking at 1 - 6 of 6 items for

  • Author: F Sinowatz x
Clear All Modify Search
Restricted access



Explants of canine prostate were cultured in a defined medium for periods of up to 5 days with and without added steroids. Testosterone and 5α-dihydrotestosterone failed to maintain their histological integrity and induced a greatly increased formation of stromal elements. Epitestosterone and 5α-dihydroepitestosterone were partially successful in maintaining epithelial height although secretory activity was not preserved. The only steroid that sustained epithelial height and secretory activity whilst keeping stromal growth at a minimum was 5α-androstane-3α, 17α-diol. The three other epimeric androstanediols were ineffective.

Restricted access

A Plath, R Einspanier, F Peters, F Sinowatz and D Schams

It is now widely accepted that the mammary gland is under interconnected hormonal and local control. Growth factors are involved in the intercellular signalling of the gland. Our aim was the detection of transforming growth factors alpha (TGF-alpha) and beta 1 (TGF-beta 1) messenger RNA during mammogenesis, lactogenesis, galactopoiesis and involution in the bovine mammary gland (total n = 27). During these stages the RNA was assessed by means of ribonuclease protection assay and reverse transcription-polymerase chain reaction (RT-PCR). To study possible influences of oestrogen, progesterone and prolactin on growth factor expression, mammary RNA was obtained from heifers after induced mammogenesis and lactogenesis, with and without additional prolactin inhibition (total n = 20). Very low levels of TGF-alpha and TGF-beta 1 expression were detected during lactogenesis and galactopoiesis, increasing levels during mammogenesis of primigravid heifers, and highest levels during mammogenesis of virgin heifers and during involution. TGF-alpha expression after induced mammogenesis was greater than after induced lactogenesis or physiological mammogenesis during pregnancy. Furthermore, TGF-alpha mRNA contents increased after prolactin inhibition. TGF-beta 1 expression was almost equal after induced mammogenesis and lactogenesis, but greater than during the physiological mammogenesis and lactogenesis. In conclusion, it can be assumed that growth promoting TGF-alpha and growth inhibiting TGF-beta 1 are co-expressed in the bovine mammary gland. Higher mRNA contents of both factors during mammogenesis and involution may indicate autocrine or paracrine functions for these growth factors during proliferation and reorganisation of the mammary tissue.

Free access

D Schams, S Kohlenberg, W Amselgruber, B Berisha, MW Pfaffl and F Sinowatz

It is now well established that oestrogen and progesterone are absolutely essential for mammary gland development. Lactation can be induced in non-pregnant animals by sex steroid hormone treatment. Most of the genomic actions of oestrogens are mediated by two oestrogen receptors (ER)-alpha and ERbeta, and for gestagens in ruminants by the progesterone receptor (PR). Our aim was the evaluation of mRNA expression and protein (localisation and Western blotting) during mammogenesis, lactogenesis, galactopoiesis (early, middle and late) and involution (8, 24, 28, 96-108 h and 14-28 days after the end of milking) in the bovine mammary gland (total no. 53). During these stages, the mRNA was assessed by means of real-time RT-PCR (LightCycler). The protein for ERalpha, ERbeta and PR was localised by immunohistochemistry and Western blotting. The mRNA expression results indicated the existence of ERalpha, ERbeta and PR in bovine mammary gland. Both ERalpha and PR are expressed in fg/ micro g total RNA range. The highest mRNA expression was found for ERalpha and PR in the tIssue of non-pregnant heifers, followed by a significant decrease to a lower level at the time of lactogenesis with low concentrations remaining during lactation and the first 4 weeks of involution. In contrast, the expression of ERbeta was about 1000-fold lower (ag/ micro g total RNA) and showed no clear difference during the stages examined, with a significant increase only 2-4 weeks after the end of milking. Immunolocalisation for ERalpha revealed a strong positive staining in nuclei of lactocytes in non-pregnant heifers, became undetectable during pregnancy, lactogenesis and lactation, and was again detectable 14-28 days after the end of milking. In contrast, PR was localised in the nuclei of epithelial cells in the mammary tIssue of non-pregnant heifers, in primigravid animals, and during late lactation and involution. During lactogenesis, peak and mid lactation, fewer nuclei of epithelial cells were positive, but increased staining of the cytoplasm of epithelial cells was obvious. ERalpha and ERbeta protein was found in all mammary gland stages examined by Western blotting. In contrast to mRNA expression, the protein signal for ERalpha was weaker in the tIssue of non-pregnant heifers and during involution (4 weeks). ERbeta protein showed a stronger signal (two isoform bands) in non-pregnant heifers and 4 weeks after the end of milking. This correlated with the mRNA expression data. Three isoforms of PR (A, B and C) were found by Western blotting in the tIssue of non-pregnant heifers, but only isoform B remained during the following stages (lactogenesis, galactopoiesis and involution). In conclusion, the mRNA expression and protein data for ER and PR showed clear regulatory changes, suggesting involvement of these receptors in bovine mammary gland development and involution.

Free access

A Plath-Gabler, C Gabler, F Sinowatz, B Berisha and D Schams

To study the involvement of the IGFs in mammary development and lactation of the cow, the temporal expressions of IGF-I and -II, its receptor type 1 (IGFR-1), IGF-binding proteins (IGFBPs)-1 to -6 and GH receptor (GHR) mRNA were examined. This was carried out for different stages of mammogenesis, lactogenesis, galactopoiesis and involution in the bovine mammary gland of 26 animals. Furthermore, IGF-I was localised by immunohistochemistry. The highest mRNA concentrations for IGF-I were detected in the mammary tissue of late pregnant heifers (days 255-272) and significantly lower expression was detected during lactogenesis and galactopoiesis. Immunohistochemistry of IGF-I revealed only a weak staining in the epithelium of the ducts during mammogenesis. The epithelium of the alveoli were negative during mammogenesis, lactogenesis and galactopoiesis but displayed distinct IGF-I activity during involution. In the stroma a distinct staining of the cytoplasm of adipocytes and of vascular smooth muscle cells was observed. A certain percentage of fibroblasts (usually 20-30%) were also immunopositive. In contrast, highest expression for IGFR-1 was detected during galactopoiesis and involution. The lowest mRNA concentration for IGFR-1 was found during pregnancy (days 194-213). In general, the expression of IGF-II was not regulated during mammogenesis and lactation, but decreased during involution. The mRNA for the six binding proteins was detected in the bovine mammary gland. The dominant binding proteins were IGFBP-3 and -5. The highest expression of IGFBP-3 was observed during mid-pregnancy and the lowest during late lactation, involution and in non-pregnant heifers. The mRNA for IGFBP-5 increased during late mammogenesis and lactogenesis followed by a decrease thereafter. In general, the mRNA concentrations for IGFBP-2, -4 and -6 were barely detectable during all stages. In contrast, the expression for IGFBP-1 was upregulated in the mammary gland of virgin heifers and increased around the onset of lactation. mRNA for GHR was found during all stages examined without outstanding fluctuations. In conclusion, locally produced IGF-I and -II may mediate mammogenesis. The high mammary IGFR-1 mRNA during lactation suggests a role for peripheral IGF-I in maintenance of lactation. The role of IGFBPs in the mammary gland needs further evaluation.

Free access

F Sinowatz, D Schams, S Kolle, A Plath, D Lincoln and MJ Waters

We have used immunohistochemistry and non-radioactive in situ hybridisation to localise the GH receptor and its transcript in the bovine mammary gland during mammogenesis, lactation and involution. We found a characteristic pattern of immunoreactive GH (irGH) receptor distribution in the epithelial and stromal compartments during the different stages of mammary gland development: The ductular epithelium showed a distinct staining for irGH receptor during most stages, whereas the alveolar epithelium contained a modest amount of GH receptor during pregnancy which increased during lactation and galactopoiesis. In dry cows, the immunostaining for GH receptors in the alveolar epithelium was very weak or negative. Curiously, the amount of GH receptor mRNA appeared relatively constant during mammogenesis and lactation. The epithelial cells of the alveoli and ducts as well as the endothelial cells showed a distinct signal in our in situ hy! bridisation studies. The predominant localisation of GH receptors in the epithelium of ducts and alveoli is supportive of a role for GH in epithelial differentiation and maintenance. Furthermore, the increased intensity of immunostaining in bovine mammary tissue post partum suggests a direct role for GH receptor in mediating the effect of GH in milk production and secretion.

Free access

S E Ulbrich, S Rehfeld, S Bauersachs, E Wolf, R Rottmayer, S Hiendleder, M Vermehren, F Sinowatz, H H D Meyer and R Einspanier

Nitric oxide synthases (NOS) account for the endogenous production of nitric oxide (NO), a small and permeable bioreactive molecule. NO is known to act as a paracrine mediator during various processes associated with female reproduction. In the present study, the mRNA expression of the endothelial (eNOS) and inducible (iNOS) NO synthases were examined in bovine oviduct epithelial cells (BOEC) during the oestrous cycle. In addition, eNOS and iNOS mRNA and protein were localised by in situ hybridisation and immunocytochemistry respectively. Furthermore, the effects of exogenously applied oestradiol-17β and progesterone on NOS mRNA regulation were studied in a suspension culture of BOEC. The eNOS mRNA abundance was low around ovulation (day 0) and increased significantly until pro-oestrus (day 18) in the ampulla. Immunoreactive protein of eNOS was detected predominantly in endothelial cells as well as in secretory oviduct epithelial cells at pro-oestrus. The iNOS mRNA concentration was significantly reduced in the isthmus at pro-oestrus (day 18) and oestrus (day 0) compared with persistently high levels in the ampulla. By in situ hybridisation, specific iNOS transcripts were additionally demonstrated in the oviduct epithelium. Immunoreactive iNOS protein was localised in secretory epithelial cells as well as in the lamina muscularis. The in vitro stimulation showed that both NOS were stimulated by progesterone, but not by oestradiol-17β. The region-specific modulated expression of eNOS and iNOS provides evidence for an involvement of endogenously produced NO in the regulation of oviductal functions.