Search Results
You are looking at 1 - 2 of 2 items for
- Author: FC Denison x
- Refine by access: All content x
Search for other papers by FC Denison in
Google Scholar
PubMed
Search for other papers by RW Kelly in
Google Scholar
PubMed
Search for other papers by AA Calder in
Google Scholar
PubMed
Search for other papers by SC Riley in
Google Scholar
PubMed
Secretory leukocyte protease inhibitor is a potent inhibitor of neutrophil function, a mediator of mucosal immunity and an inhibitor of NF|gkB regulated inflammatory responses. However, its source, function and regulation within the uterus during pregnancy and at parturition are not well defined. In amniotic fluid, the concentration of secretory leukocyte protease inhibitor increased significantly from 2nd trimester (24+/-3 ng/ml; mean+/-s.e.m.; n=20) to term (751+/-53 ng/ml; P<0.05; n=15) with a further profound increase (P<0.005) with the onset of labour (3929+/-1076 ng/ml; n=15). To establish the intra-uterine sites of secretion, explants (n=6 different patients per tissue) were collected at term after elective caesarean section. High levels of secretory leukocyte protease inhibitor were released by decidua (135.2+/-12.4 pg/mg; mean+/-s.e.m.) and chorio-decidua (325.1+/-26.4 pg/mg) with less by amnion (55.6+/-6.0 pg/mg) and placenta (9.2+/-1.9 pg/mg). Intense immunoreactivity for secretory leukocyte protease inhibitor was detected predominantly in decidua parietalis cells adherent to the chorion laeve and myometrium, and also in decidua basalis. We propose that, within the pregnant uterus, secretory leukocyte protease inhibitor is released by decidua, fetal membranes and potentially the fetal lung. The increase in secretory leukocyte protease inhibitor may act to modulate pro-inflammatory paracrine interactions for the maintenance of pregnancy and limit those occurring at parturition within the uterus.
Search for other papers by SC Riley in
Google Scholar
PubMed
Search for other papers by R Leask in
Google Scholar
PubMed
Search for other papers by FC Denison in
Google Scholar
PubMed
Search for other papers by K Wisely in
Google Scholar
PubMed
Search for other papers by AA Calder in
Google Scholar
PubMed
Search for other papers by DC Howe in
Google Scholar
PubMed
At parturition, breakdown of extracellular matrix in the fetal membranes may play a part in the rupture of the membranes and in the aetiology of premature rupture, in addition to having a regulatory role in the cell-cell interactions and signalling at the feto-maternal interface to stimulate myometrial contractility. The matrix metalloproteinases (MMPs) are important enzymes for the breakdown of extracellular matrix and their activity is regulated by a family of endogenous inhibitors, the tissue inhibitors of matrix metalloproteinases (TIMPs). At parturition, alteration in the balance between MMPs and TIMPs may mediate this extracellular matrix breakdown during rupture of fetal membranes. The aims of this study were to determine if the intrauterine secretion of TIMPs changes at labour, and to characterise their cellular sources. A broad range of TIMP activities (27-30 kDa, 24 kDa and 21 kDa) were detected by reverse zymography in term amniotic fluid. There was a significant (P<0.05) decrease in the amount of TIMPs in amniotic fluid and their release with the onset of labour. The TIMPs were characterised by immunoblot as TIMPs-1, -2, -3 and -4. High levels of TIMPs were secreted by explants of chorio-decidua, decidua parietalis and placenta, with less being released by amnion. Immunolocalisation studies revealed a specific distribution pattern for each of the TIMP isoforms. Trophoblast cells of chorion laeve, decidua parietalis and placental syncytiotrophoblast demonstrated specific immunoreactivity for all four isoforms. TIMPs were also found bound to selective regions of extracellular matrix. The decrease in TIMPs during labour may permit increased breakdown of extracellular matrix in the fetal membranes and decidua at parturition, thus altering cell signalling at the feto-maternal interface and facilitating membrane rupture.