Search Results
You are looking at 1 - 1 of 1 items for
- Author: FH Bloomfield x
- Refine by access: All content x
Search for other papers by MK Bauer in
Google Scholar
PubMed
Search for other papers by BB Breier in
Google Scholar
PubMed
Search for other papers by FH Bloomfield in
Google Scholar
PubMed
Search for other papers by EC Jensen in
Google Scholar
PubMed
Search for other papers by PD Gluckman in
Google Scholar
PubMed
Search for other papers by JE Harding in
Google Scholar
PubMed
Intra-uterine growth restriction (IUGR) is a major cause of perinatal mortality and morbidity. Postnatally, growth hormone (GH) increases growth, increases circulating insulin-like growth factor (IGF)-I levels, and alters metabolism. Our aim was to determine if GH infusion to IUGR fetal sheep would alter fetal growth and metabolism, and thus provide a potential intra-uterine treatment for the IUGR fetus. We studied three groups of fetuses: control, IUGR+ vehicle and IUGR+GH (n=5 all groups). IUGR was induced by repeated embolisation of the placental vascular bed between 110 and 116 days of gestation (term=145 days). GH (3.5 mg/kg/day) or vehicle was infused in a pulsatile manner from 117 to 127 days of gestation. Embolisation reduced fetal growth rate by 25% (P<0.01) and reduced the weight of the fetal liver (20%), kidney (23%) and thymus (31%; all P<0.05). GH treatment further reduced the weight of the fetal kidneys (32%) and small intestine (35%; both P<0.04), but restored the relative weight of the fetal thymus and liver (P<0.05). Embolisation decreased fetal plasma IGF-I concentrations (48%, P<0.001) and increased IGF binding protein 1 (IGFBP-1) concentrations (737%, P<0.002). GH treatment restored fetal plasma IGF-I concentrations to control levels, while levels in IUGR+vehicle fetuses stayed low (P<0.05 vs control). IGFBP-1 and IGFBP-2 concentrations were about sevenfold lower in amniotic fluid than in fetal plasma, but amniotic and plasma concentrations were closely correlated (r=0.75, P<0.0001 and r=0.55 P<0.0001 respectively). Embolisation transiently decreased fetal blood oxygen content (40%, P<0.002), and increased blood lactate concentrations (213%, P<0.04). Both returned to pre-embolisation levels after embolisation stopped, but blood glucose concentrations declined steadily in IUGR+vehicle fetuses. GH treatment maintained fetal blood glucose concentrations at control levels. Our study shows that GH infusion to the IUGR fetal sheep restores fetal IGF-I levels but does not improve fetal growth, and further reduces the fetal kidney and intestine weights. Thus, fetal GH therapy does not seem a promising treatment stratagem for the IUGR fetus.