Search Results

You are looking at 1 - 2 of 2 items for

  • Author: G Gabai x
  • Refine by access: All content x
Clear All Modify Search
L Ferasin
Search for other papers by L Ferasin in
Google Scholar
PubMed
Close
,
G Gabai
Search for other papers by G Gabai in
Google Scholar
PubMed
Close
,
J Beattie
Search for other papers by J Beattie in
Google Scholar
PubMed
Close
,
G Bono
Search for other papers by G Bono in
Google Scholar
PubMed
Close
, and
A T Holder
Search for other papers by A T Holder in
Google Scholar
PubMed
Close

The ability of site-specific antipeptide antisera to enhance the biological activity of ovine FSH (oFSH) in vivo was investigated using hypopituitary Snell dwarf mice. These animals were shown to respond to increasing doses of oFSH (3·3–90 μg/day), administered in two daily injections over a 5-day treatment period, in a highly significant dose-dependent fashion. The responses measured were increases in uterine weight, ovarian weight and the index of keratinisation in vaginal smears. The dose-dependent response to oFSH confirmed the suitability of this animal model for these investigations and suggested the suboptimal dose of oFSH (20 μg/day) for use in enhancement studies.

Five peptides derived from the β subunit of bovine FSH (bFSH) (A, residues 33–47; B, 40–51; C, 69–80; D, 83–94; E, 27–39) were used to generate polyclonal antipeptide antisera. Of these peptides, only A and B produced an antiserum (raised in sheep) capable of recognising 125I-bFSH in a liquid phase RIA. Antisera prepared against peptide A or peptide B were found to significantly enhance the biological activity of 20 μg oFSH/day over a 5-day treatment period. The response to antipeptide antisera alone did not differ significantly from that observed in PBS-injected control animals, neither did the response to FSH alone differ from that observed in animals treated with FSH plus preimmune serum. Thus the enhanced responses are dependent upon the presence of FSH plus antipeptide antiserum. Peptides A and B are located in a region thought to be involved in receptor recognition, this may have implications for the mechanism underlying this phenomenon and/or the structure/function relationships of FSH.

That FSH-enhancing antisera can be generated by immunisation of animals with peptides A and B suggests that it may be possible to develop these peptides as vaccines capable of increasing reproductive performance, such as ovulation rate. The high degree of sequence homology between ovine, bovine and porcine (and to a lesser extent human and equine) FSH in the region covered by peptides A and B suggests that these peptides could also be used to promote and regulate ovarian function in all of these species.

Journal of Endocrinology (1997) 152, 355–363

Restricted access
I A Forsyth
Search for other papers by I A Forsyth in
Google Scholar
PubMed
Close
,
J A Taylor
Search for other papers by J A Taylor in
Google Scholar
PubMed
Close
,
G Gabai
Search for other papers by G Gabai in
Google Scholar
PubMed
Close
, and
I R Fleet
Search for other papers by I R Fleet in
Google Scholar
PubMed
Close

Abstract

125I-Labelled ovine prolactin was infused for 15 min into a pudic artery supplying one mammary gland of lactating goats (n=17). Between 0 and 4·25 h significandy more total (P<0·01) and trichloroacetic acid (TCA)-precipitable (P<0·001) radioactivity appeared in the milk of the infused compared with the non-infused gland. Gel chromatography and antibody precipitation indicated the presence of undegraded 125I-labelled prolactin in milk whey. Maximum transfer occurred 60–80 min after the end of infusion suggesting passage via a transcellular route. High plasma prolactin concentrations, resulting from infusion of cold prolactin with labelled prolactin in late lactation or from seasonally elevated prolactin at peak lactation, reduced the specific activity of infused prolactin and depressed the difference in secretion of 125I-labelled prolactin into milk of infused and non-infused glands. This suggests the operation of a competitive and saturable mechanism. Together with the increase in the milk to blood ratio of prolactin in goats given long-term (3 week) bromocriptine treatment, the results suggest that the goat mammary gland has a high avidity for prolactin especially when circulating prolactin is low. There was also evidence from TCA precipitation that prolactin may be protected from degradation in these circumstances. These mechanisms may contribute to the resistance of ruminant lactation to reduction in plasma prolactin and protect lactation from seasonal prolactin fluctuations.

Journal of Endocrinology (1995) 146, 411–420

Restricted access