Search Results

You are looking at 1 - 2 of 2 items for

  • Author: G Lazennec x
  • Refine by Access: All content x
Clear All Modify Search
Free access

R Margueron, A Licznar, G Lazennec, F Vignon, and V Cavailles

We analysed the antiproliferative activity of various histone deacetylase (HDAC) inhibitors such as trichostatin A (TSA) on human breast cancer cells. We observed a lower sensitivity to HDAC inhibition for oestrogen receptor negative (ER-) versus positive (ER+) cell lines. This differential response was associated neither with a modification of drug efflux via the multidrug resistance system nor with a global modification of histone acetyltransferase (HAT)/HDAC activities. In contrast, we demonstrated that in ER+ breast cancer cells the p21(WAF1/CIP1) gene was more sensitive to TSA regulation and was expressed at higher levels. These differences were observed both in transient transfection experiments and on the endogenous p21(WAF1/CIP1) gene. The Sp1 transcription factor, which was shown to interact in vitro with both class I and class II HDACs, is sufficient to confer the differential sensitivity to TSA and participated in the control of p21(WAF1/CIP1) basal expression. Finally, re-expression of ERalpha following adenoviral infection of ER- breast cancer cells increased both p21(WAF1/CIP1) protein accumulation and the growth inhibitory activity of TSA. Altogether, our results highlight the key role of ERalpha and p21(WAF1/CIP1) gene expression in the sensitivity of breast cancer cells to hyperacetylating agents.

Free access

M A J Hervé, G Meduri, F G Petit, T S Domet, G Lazennec, S Mourah, and M Perrot-Applanat

The induction of vascular endothelial growth factor (VEGF) expression by 17β-estradiol (E2) in many target cells, including epithelial cells, fibroblasts and smooth muscle cells, suggests a role for this hormone in the modulation of angiogenesis and vascular permeability. We have already described a cyclic increase in Flk-1/KDR-expressing capillaries in the human endometrium during the proliferative and mid-secretory phases, strongly suggestive of an E2 effect on Flk-1/KDR expression in the endometrial capillaries. However, it is unclear whether these processes are due to a direct effect of E2 on endothelial cells. Using immunohistochemistry, we report an increase in Flk-1/KDR expression in endometrial capillaries of ovariectomized mice treated with E2, or both E2 and progesterone. This process is mediated through estrogen receptor (ER) activation. In vitro experiments using quantitative RT-PCR analysis demonstrate that Flk-1/KDR expression was not regulated by E2 in human endothelial cells from the microcirculation (HMEC-1) or macrocirculation (HUVEC), even in endothelial cells overexpressing ERα or ERβ after ER-mediated adenovirus infection. In contrast, Flk-1/KDR expression was up-regulated by VEGF itself, in a time- and dose-dependent manner, with the maximal response at 10 ng/ml. Thus, we suggest that E2 up-regulates Flk-1/KDR expression in vivo in endothelial cells mainly through the modulation of VEGF by a paracrine mechanism. It is currently unknown whether or not the endothelial origin might account for differences in the E2-modulation of VEGF receptor expression, particularly in relation to the vascular bed of sex steroid-responsive tissues.