Search Results

You are looking at 1 - 2 of 2 items for

  • Author: GA Braems x
  • Refine by access: All content x
Clear All Modify Search
M Fraser
Search for other papers by M Fraser in
Google Scholar
PubMed
Close
,
GA Braems
Search for other papers by GA Braems in
Google Scholar
PubMed
Close
, and
Challis JR
Search for other papers by Challis JR in
Google Scholar
PubMed
Close

Responsiveness of the fetal sheep adrenal gland to adrenocorticotrophin (ACTH) increases in late pregnancy, resulting in increased glucocorticoid production. Development of this responsiveness is an important determinant of fetal hypothalamic-pituitary-adrenal function and depends, in part, on the potential for ACTH binding to adrenal tissue. In the present study, we have examined the developmental pattern of ACTH receptor (ACTH-R) expression during the latter half of pregnancy and in neonatal and adult life. As hypoxaemia induces increases in cortisol and ACTH secretion, in addition to increasing fetal adrenal responsiveness, a further aim of this study was to investigate whether hypoxaemia was associated with altered expression of the ACTH-R gene. Whole adrenal glands were removed from fetal sheep, lambs and adult sheep at different stages of development for measurement of ACTH-R mRNA. Moderate hypoxaemia was induced for 48 h beginning on days 124-128, or on days 132-134 of gestation, by decreasing the maternal fractional inspired oxygen. ACTH-R mRNA was detected by northern blotting using a cDNA cloned in our laboratory and by in situ hybridisation. ACTH-R mRNA (3.6 kb major transcript) was detected in adrenal tissue at day 63 of gestation. Its relative abundance increased significantly (P<0.05) between days 126-128 and 140-141 of pregnancy, increased further with the onset of spontaneous labour, and remained increased in newborn lambs at 7 h-7 days after birth. ACTH-R mRNA levels then decreased in adrenal tissue from lambs and adult sheep (P<0.05). Hypoxaemia for 48 h significantly increased ACTH-R mRNA expression in adrenals of the older fetuses (days 134-136) compared with that in controls (P<0.05), but was without effect in younger fetuses. We conclude that levels of ACTH-R mRNA in the fetal adrenal gland increase as term approaches, coincident with the endogenous prepartum surge in plasma ACTH and cortisol. Sustained hypoxaemia resulted in an upregulation of mRNA encoding for ACTH-R, but only in older fetuses and in association with a sustained increase in plasma cortisol. These results are consistent with cortisol, ACTH, or both, contributing to increased fetal adrenal responsiveness, by increasing expression of fetal adrenal receptors for ACTH.

Free access
GA Braems
Search for other papers by GA Braems in
Google Scholar
PubMed
Close
,
VK Han
Search for other papers by VK Han in
Google Scholar
PubMed
Close
, and
Challis JR
Search for other papers by Challis JR in
Google Scholar
PubMed
Close

Hypoxemia represents a major stress for the fetus, and is associated with alterations and adaptations in cardiovascular, metabolic and endocrine responses, which in turn may affect tissue growth and differentiation. To determine the effects of hypoxemia on fetal adrenal activity and growth, we subjected sheep fetuses at days 126-130 and 134-136 (term 145 days) to reduced PaO2 by reducing the maternal fraction of oxygen for 48 h (mean reduction of 6.8 mmHg), without change in arterial pH or PaCO2. This stimulus resulted in similar increases in the plasma immunoreactiveACTH response at both ages. Among adrenal steroids, plasma cortisol (C21Delta4) rose in both groups of animals, but plasma androstenedione (C19Delta4) declined marginally, resulting in a pronounced increase in the cortisol:androstenedione ratio in the plasma that was greater and more sustained in the older fetuses. In the younger fetuses, after 48 h of hypoxemia, there were no significant changes in mRNAs encoding steroidogenic enzymes in the fetal adrenal gland. However, in the older fetuses, hypoxemia resulted in significantly increased levels of mRNAs encoding P450scc, P450C21 and 3beta-hydroxysteroid dehydrogenase, but not for P450C17, in the fetal adrenal gland. Levels of IGF-II mRNA in the fetal adrenal gland fell in both groups of fetuses, and this response was greater at the later gestational age. We conclude that sustained hypoxemia is a potent stimulus which activates adrenal steroidogenesis in the late gestation fetal sheep. The resultant increase in cortisol synthesis is associated with decreased expression of adrenal IGF-II mRNA. We speculate that this relationship might influence patterns of fetal organ growth and differentiative function in response to fetal stress such as hypoxemia.

Free access