Aromatase inhibitors have been increasingly used in boys with growth retardation to prolong the duration of growth and increase final height. Multiple important roles of oestrogen in males point to potential adverse effects of this strategy. Although the deleterious effects of aromatase deficiency in early childhood and adulthood are well documented, there is limited information about the potential long-term adverse effects of peripubertal aromatase inhibition. To address this issue, we evaluated short-term and long-term effects of peripubertal aromatase inhibition in an animal model. Peripubertal male Wistar rats were treated with aromatase inhibitor letrozole or placebo and followed until adulthood. Letrozole treatment caused sustained reduction in bone strength and alteration in skeletal geometry, lowering of IGF1 levels, inhibition of growth resulting in significantly lower weight and length of treated animals and development of focal prostatic hyperplasia. Our observation of adverse long-term effects after peripubertal male rats were exposed to aromatase inhibitors highlights the need for further characterisation of long-term adverse effects of aromatase inhibitors in peripubertal boys before further widespread use is accepted. Furthermore, this suggests the need to develop more selective oestrogen inhibition strategies in order to inhibit oestrogen action on the growth plate, while beneficial effects in other tissues are preserved.
Search Results
You are looking at 1 - 3 of 3 items for
- Author: Gail Risbridger x
- Refine by Access: All content x
Anurag Bajpai, Peter J Simm, Stephen J McPherson, Vincenzo C Russo, Walid J Azar, John D Wark, Gail P Risbridger, and George A Werther
Genevieve V Dall, Samuel Hawthorne, Yashar Seyed-Razavi, Jessica Vieusseux, Wanfu Wu, Jan-Ake Gustafsson, David Byrne, Leigh Murphy, Gail P Risbridger, and Kara L Britt
Estrogen induces proliferation of breast epithelial cells and is responsible for breast development at puberty. This tightly regulated control is lost in estrogen-receptor-positive (ER+) breast cancers, which comprise over 70% of all breast cancers. Currently, breast cancer diagnosis and treatment considers only the α isoform of ER; however, there is a second ER, ERβ. Whilst ERα mediates estrogen-driven proliferation of the normal breast in puberty and breast cancers, ERβ has been shown to exert an anti-proliferative effect on the normal breast. It is not known how the expression of each ER (alone or in combination) correlates with the ability of estrogen to induce proliferation in the breast. We assessed the levels of each ER in normal mouse mammary glands subdivided into proliferative and non-proliferative regions. ERα was most abundant in the proliferative regions of younger mice, with ERβ expressed most abundantly in old mice. We correlated this expression profile with function by showing that the ability of estrogen to induce proliferation was reduced in older mice. To show that the ER profile associated with breast cancer risk, we assessed ER expression in parous mice which are known to have a reduced risk of developing ERα breast cancer. ERα expression was significantly decreased yet co-localization analysis revealed ERβ expression increased with parity. Parous mice had less unopposed nuclear ERα expression and increased levels of ERβ. These changes suggest that the nuclear expression of ERs dictates the proliferative nature of the breast and may explain the decreased breast cancer risk with parity.
Renea A Taylor, Mitchell G Lawrence, and Gail P Risbridger
There is longstanding interest in the role of androgens in the aetiology of prostate cancer, one of the most common malignancies worldwide. In this review, we reflect on the ways that knowledge of prostate development and hormone action have catalysed advances in the management of patients with prostate cancer. The use of hormone therapies to treat prostate cancer has changed significantly over time, including the emergence of androgen receptor signalling inhibitors (ARSI). These compounds have improved outcomes for patients with castration-resistant prostate cancer, which was once considered ‘androgen-independent’ but is clearly still driven by androgen receptor signalling in many cases. There is also a need for new therapies to manage neuroendocrine prostate cancer, which is not responsive to hormonal agents. One of the major gaps is understanding how treatment-induced neuroendocrine prostate cancer emerges and whether it can be re-sensitised to treatment. Patient-derived models, including patient-derived xenografts (PDXs), will be instrumental in facilitating future discoveries in these areas. Developments in the use of PDXs have been fostered by lessons from the field of endocrinology, such as the role of stroma and hormones in normal and developmental tissues. Thus, there is ongoing reciprocity between the discoveries in endocrinology and advances in prostate cancer research and treatment.