Search Results
You are looking at 1 - 2 of 2 items for
- Author: H Kageyama x
- Refine by access: All content x
Search for other papers by Y. Kageyama in
Google Scholar
PubMed
Search for other papers by H. Suzuki in
Google Scholar
PubMed
Search for other papers by T. Saruta in
Google Scholar
PubMed
ABSTRACT
It has been suggested that the mineralocorticoid action of glycyrrhizin is caused by a defect in the conversion of cortisol to cortisone through inhibition of the enzyme 11β-dehydrogenase (11β-DH). We investigated the functional significance of the inhibition of this enzyme as a mechanism of the mineralocorticoid action of glycyrrhizin. Eighteen healthy volunteers were divided into three groups of six and treated as follows: (1) 225 mg glycyrrhizin/day, (2) 0·1 mg 9α-fluorocortisol (FC)/day and (3) 225 mg glycyrrhizin and 1·5 mg dexamethasone/day, all of which were given for 7 days. The administration of glycyrrhizin or FC induced a similar mineralocorticoid effect; specifically, suppression of plasma renin activity, hypokalaemia and kaliuresis. During the concomitant administration of glycyrrhizin and dexamethasone, however, these mineralocorticoid effects were significantly attenuated. During the administration of glycyrrhizin, urinary excretion of cortisol increased without change in the plasma levels of cortisol, while both plasma level and urinary excretion of cortisone decreased. Changes in cortisol metabolism were not observed during the administration of FC. These results demonstrated the functional significance of the inhibition of 11β-DH in the mineralocorticoid activity of glycyrrhizin in man.
Journal of Endocrinology (1992) 135, 147–152
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by M S Mondal in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by H Yamaguchi in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by Y Date in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by K Toshinai in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by T Kawagoe in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by T Tsuruta in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by H Kageyama in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by Y Kawamura in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by S Shioda in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by Y Shimomura in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by M Mori in
Google Scholar
PubMed
Department of Anatomy, Showa University School of Medicine, Tokyo 142-8555, Japan
Discovery Research Laboratories, Pharmaceuticals Research Division, Takeda Chemical Industries, Ibaraki 300-4293, Japan
Search for other papers by M Nakazato in
Google Scholar
PubMed
Neuropeptide W (NPW) is a 30-amino-acid peptide initially isolated from the porcine hypothalamus as an endogenous ligand for the G protein-coupled receptors GPR7 and GPR8. An intracerebroventricular administration of NPW increased serum prolactin and corticosterone concentrations, decreased dark-phase feeding, raised energy expenditure, and lowered body weight. Peripherally, GPR7 receptors are abundantly expressed throughout the gastrointestinal tract; the presence of NPW in the gastrointestinal endocrine system, however, remains unstudied. Using monoclonal and polyclonal antibodies raised against rat NPW, we studied the localization of NPW in the rat, mouse, and human stomach by light and electron microscopy. NPW-immunoreactive cells were identified within the gastric antral glands in all three species. Double immunohistochemistry and electron-microscopic immunohistochemistry studies in rats demonstrated that NPW is present in antral gastrin (G) cells. NPW immunoreactivity localized to round, intermediate-to-high-density granules in G cells. NPW-immunoreactive cells accounted for 90% chromagranin A- and 85% gastrin-immunoreactive endocrine cells in the rat gastric antral glands. Using reversed-phase HPLC coupled with enzyme immunoassays specific for NPW, we detected NPW30 and its C-terminally truncated form, NPW23, in the gastric mucosa. Plasma NPW concentration of the gastric antrum was significantly higher than that of the systemic vein, suggesting that circulating NPW is derived from the stomach. Plasma NPW concentration of the gastric antrum decreased significantly after 15-h fast and increased after refeeding. This is the first report to clarify the presence of NPW peptide in the stomachs of rats, mice, and humans. In conclusion, NPW is produced in gastric antral G cells; our findings will provide clues to additional mechanisms of the regulation of gastric function by this novel brain/gut peptide.