Search Results

You are looking at 1 - 2 of 2 items for

  • Author: H Lahm x
  • Refine by Access: All content x
Clear All Modify Search
Free access

MR Schneider, E Wolf, A Hoeflich, and H Lahm

The multiple activities of IGF-I and -II are modulated by a family of IGF-binding proteins (IGFBP-1 to -6). Although structurally related, each IGFBP has unique properties and exerts specific functions. IGFBP-5 is the most conserved IGFBP across species and was identified as an essential regulator of physiological processes in bone, kidney and mammary gland. In addition, IGFBP-5 appears to play a decisive role in the control of proliferation of specific tumour cell types. In many situations IGFBP5 exerts biological activities in the absence of IGFs, indicating the existence of IGF-independent actions. This concept was supported by the unexpected localisation of IGFBP-5 in the nucleus and the description of IGFBP-5-specific membrane-bound IGFBP-5 receptor(s). The scope of this review is to summarise the available information about the structure of IGFBP-5 and the regulation of its expression. Furthermore, the potential significance of IGFBP-5 in the regulation of physiological processes will be critically analysed in the light of recent experimental data.

Free access

R Zhou, D Diehl, A Hoeflich, H Lahm, and E Wolf

IGFs have multiple functions regarding cellular growth, survival and differentiation under different physiological and pathological conditions. IGF effects are modulated systemically and locally by six high-affinity IGF-binding proteins (IGFBP-1 to -6). Despite their structural similarity, each IGFBP has unique properties and exhibits specific functions. IGFBP-4, the smallest IGFBP, exists in both non-glycosylated and N-glycosylated forms in all biological fluids. It is expressed by a wide range of cell types and tIssues, and its expression is regulated by different mechanisms in a cell type-specific manner. IGFBP-4 binds IGF-I and IGF-II with similar affinities and inhibits their actions under almost all in vitro and in vivo conditions. In this review, we summarize the available data regarding the following aspects of IGFBP-4: genomic organization, protein structure-function relationship, expression and its regulation, as well as IGF-dependent and -independent actions. The biological significance of IGFBP-4 for reproductive physiology, bone formation, renal pathophysiology and cancer is discussed.