Search Results
You are looking at 1 - 3 of 3 items for
- Author: H Sakaguchi x
- Refine by access: All content x
Search for other papers by H Sakaguchi in
Google Scholar
PubMed
Search for other papers by Y Takei in
Google Scholar
PubMed
Only C-type natriuretic peptide (CNP) has been identified in primitive elasmobranch fish. CNP is the most conserved molecule in the natriuretic peptide family, suggesting that it is the ancestral type. As a first step to investigating the ancestral type of natriuretic peptide receptors, CNP receptors were characterised in an elasmobranch (dogfish, Triakis scyllia) by radioligand-binding analysis using 125I-[Tyr0]-dogfish (df)CNP. None of the modifications of the CNP molecule that occur at the time of iodination (addition of a Tyr residue at the N-terminus, introduction of iodine into Tyr0 or oxidation of Met17) affect the affinity of dfCNP for the receptors. Neither did oxidation of Met17 decrease the ability of CNP to stimulate cGMP production. In the tissues examined, CNP receptors were densest in the gill cells followed by the intestine, interrenal gland and rectal gland, all of which are involved in osmoregulation in elasmobranchs. CNP-stimulated guanylate cyclase (GC) activity was highest in the interrenal gland, intestine, brain and rectal gland, followed by the gill cells. Since the gill cells seem to contain both GC-coupled and uncoupled receptors, this tissue was used to characterise dogfish CNP receptors. Scatchard analysis of the saturation isotherm revealed two classes of binding site: one has a Kd of 24.0 pM and Bmax of 59.9 fmol/mg protein, and the other has low affinity (Kd > 1 nM) and high capacity (Bmax > 200 fmol/mg protein). The higher-affinity binding sites may represent GC-uncoupled receptors, because C-ANF, a specific ligand for GC-uncoupled receptors, almost completely displaced CNP binding. Affinity-labelling experiments showed that dogfish receptors have molecular masses of about 90, 170 and 340 kDa, and CNP binding to the former two receptors is inhibited by C-ANF. After reduction with 2-mercaptoethanol, most 170 kDa labelling was shifted to 90 kDa. It is concluded that GC-uncoupled receptors in the dogfish gill have higher molecular mass than those of mammals and eel (about 65 kDa), and are present mostly as monomers even in non-reducing conditions. However, a small population of GC-coupled receptors is also present, as demonstrated by an increase in cGMP production.
Search for other papers by T Sugiyama in
Google Scholar
PubMed
Search for other papers by H Minoura in
Google Scholar
PubMed
Search for other papers by N Toyoda in
Google Scholar
PubMed
Search for other papers by K Sakaguchi in
Google Scholar
PubMed
Search for other papers by M Tanaka in
Google Scholar
PubMed
Search for other papers by S Sudo in
Google Scholar
PubMed
Search for other papers by K Nakashima in
Google Scholar
PubMed
Abstract
Prolactin receptor (PRL-R) mRNA expression levels in the female rat brain (cerebrum) during pup contact stimulation were determined by the reverse transcription-PCR method. The high expression levels of long form PRL-R mRNA found in the brain of lactating rats were markedly reduced by removal of pups, and long form PRL-R mRNA levels were recovered by resumption of pup contact. Interestingly, pup contact stimuli of nulliparous virgin rats also markedly induced long form but not short form PRL-R mRNA expression in the brain in 1·3 days, together with the expression of maternal behaviour. In ovariectomized (OVX) or hypophysectomized (HYPOX) virgin rats, or in OVX plus HYPOX virgin rats, however, brain long form PRL-R mRNA was not significantly induced by pup contact stimuli for as long as 7 days, while maternal behaviour was fully expressed in these rats after 7 days of pup contact. The in situ hybridization experiments revealed that the long form PRL-R mRNA induced in virgin rats in contact with pups or in lactating rats was localized in the epithelial cells of the choroid plexus. No significant increase in mRNA was detected in other regions of the brain, such as the hypothalamus or cortex, in these maternal female rats. These results suggest that pup contact induces the expression of long form PRL-R mRNA in the choroid plexus of the brain in the presence of female sex steroid and pituitary hormones for the rapid expression of maternal behaviour. Our studies also suggested that maternal behaviour can be expressed in OVX or HYPOX rats after exposure to pups for 7 days without any significant increase in brain PRL-R mRNA expression.
Journal of Endocrinology (1996) 149, 335–340
Search for other papers by K Sakaguchi in
Google Scholar
PubMed
Search for other papers by T Ohkubo in
Google Scholar
PubMed
Search for other papers by T Sugiyama in
Google Scholar
PubMed
Search for other papers by M Tanaka in
Google Scholar
PubMed
Search for other papers by H Ushiro in
Google Scholar
PubMed
Search for other papers by K Nakashima in
Google Scholar
PubMed
Abstract
Prolactin (PRL) exerts a wide variety of physiological effects on mammalian tissues through its receptor (PRL-R) on the target cells. PRL-R in rat tissue consists of two isoforms, the long and the short form, and the regulatory mechanisms of their mRNA expression in tissues are complex and diverse. The present study reports the differential regulation of PRL-R mRNA expression in rat liver and kidney by testosterone and oestradiol. Using Northern blot analysis, short form PRL-R mRNA was clearly detected in female rat liver and male rat kidney, and long form PRL-R mRNA was faintly observed only in female rat liver. However, the reverse transcription-polymerase chain reaction method enabled efficient analysis of mRNA levels in short and long forms of PRL-R in the liver and kidney of both male and female rats. The mRNA levels for the long and short forms of PRL-R were depressed in the liver of male rats but not in that from female rats during sexual maturation. Castration of male rats resulted in the induction of the mRNAs for these two forms of PRL-R in the liver. Testosterone, but not oestradiol, completely blocked the induction by castration of liver PRL-R gene expression. In kidney, in contrast, mRNA levels for both forms of PRL-R were depressed in female rats but not in male rats after sexual maturation. Administration of oestradiol, but not of testosterone, caused marked repression of short form PRL-R mRNA, particularly in the kidney of male rats. The levels of long form PRL-R mRNA in the kidney was less affected by the administration of oestradiol. These results have suggested that the expression of PRL-R mRNAs in rat liver and kidney is differentially regulated by testosterone and oestrogen.
Journal of Endocrinology (1994) 143, 383–392