Search Results

You are looking at 1 - 2 of 2 items for

  • Author: H. Ohtsuka x
  • Refine by access: All content x
Clear All Modify Search
A. Sakurai
Search for other papers by A. Sakurai in
Google Scholar
PubMed
Close
,
K. Ichikawa
Search for other papers by K. Ichikawa in
Google Scholar
PubMed
Close
,
K. Hashizume
Search for other papers by K. Hashizume in
Google Scholar
PubMed
Close
,
T. Miyamoto
Search for other papers by T. Miyamoto in
Google Scholar
PubMed
Close
,
K. Yamauchi
Search for other papers by K. Yamauchi in
Google Scholar
PubMed
Close
,
H. Ohtsuka
Search for other papers by H. Ohtsuka in
Google Scholar
PubMed
Close
,
Y. Nishii
Search for other papers by Y. Nishii in
Google Scholar
PubMed
Close
, and
T. Yamada
Search for other papers by T. Yamada in
Google Scholar
PubMed
Close

ABSTRACT

The effects of histone subfractions on rat liver thyroid hormone receptor–DNA interaction were examined using an in-vitro DNA-cellulose binding assay. H1 histones bound to DNA showed reversible and potent inhibition of receptor–DNA binding without affecting receptor–hormone binding. Poly-lysine, bovine serum albumin, ovalbumin and cytochrome c did not alter receptor–DNA binding. H1 histone subfractions (calf thymus lysine-rich histone (CTL)-1, CTL-2 and CTL-3) showed potent inhibition of receptor–DNA binding indistinguishable from each other. The quantity of H1 histone subfractions bound to DNA was the same. Although each subfraction has different functional properties, inhibition of receptor–DNA binding was a common feature of all the H1 histone subfractions, which is important for the non-random distribution of the receptor in chromatin.

Binding of the receptor to core histones was investigated; it was found to bind to core histones more potently than to other proteins (H1 histone, ovalbumin and cytochrome c). Among core histone subfractions, H4 histone bound to the receptor most potently and is the candidate to be one of the acceptor sites of the receptor in chromatin.

Journal of Endocrinology (1989) 121, 337–341

Restricted access
K. Ichikawa
Search for other papers by K. Ichikawa in
Google Scholar
PubMed
Close
,
K. Hashizume
Search for other papers by K. Hashizume in
Google Scholar
PubMed
Close
,
T. Miyamoto
Search for other papers by T. Miyamoto in
Google Scholar
PubMed
Close
,
Y. Nishii
Search for other papers by Y. Nishii in
Google Scholar
PubMed
Close
,
K. Yamauchi
Search for other papers by K. Yamauchi in
Google Scholar
PubMed
Close
,
H. Ohtsuka
Search for other papers by H. Ohtsuka in
Google Scholar
PubMed
Close
, and
T. Yamada
Search for other papers by T. Yamada in
Google Scholar
PubMed
Close

ABSTRACT

An aqueous two-phase partitioning study of partially purified nuclear thyroid hormone receptor from rat liver was performed. Stability of 3,5,3′-tri-iodo-l-thyronine (T3)–receptor complex and T3-binding activity in the presence of dextran or polyethylene glycol were assessed in order to determine the amount of occupied or unoccupied receptors in each phase. Partition coefficients were calculated as the ratio of receptor concentration in the upper polyethylene glycol-rich phase H2O and that in the lower dextranrich phase H2O. The partition coefficient was a sensitive function of the salt at pH above 6·1 and below 5·1. The salt had no effect on the partition coefficient at pH around 5·6. These results suggest that the isoelectric point of the thyroid hormone receptor is about 5·6, confirming previous determinations using isoelectric focusing. The partition coefficient of the receptor decreased upon T3 binding, regardless of the salt composition. In contrast, the partition coefficient of thyroxine-binding globulin increased upon T3 binding. Free T3 preferentially partitioned into the upper polyethylene glycol-rich phase and gave a partition coefficient higher than 1·0. These results strongly suggest that the decrease in the partition coefficient of the receptor upon hormone binding reflects conformational changes or changes in electrostatic properties of the receptor upon hormone binding. Such an alteration may be involved in biological activation of the receptor upon hormone binding.

J. Endocr. (1988) 119, 431–437

Restricted access