Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Hongyu Chen x
Clear All Modify Search
Restricted access

Hongyu Su, Xueyi Chen, Yueming Zhang, Linglu Qi, Yun He, Juanxiu Lv, Yingying Zhang, Xiang Li, Jiaqi Tang and Zhice Xu

Cerebral circulation is important in fetal brain development, and angiotensin II (Ang II) plays vital roles in regulation of adult cerebral circulation. However, functions of Ang II in fetal cerebral vasculature and influences of in utero hypoxia on Ang II-mediated fetal cerebral vascular responses are largely unknown. This study investigated the effects and mechanisms of in utero hypoxia on fetal middle cerebral arteries (MCA) via Ang II. Near-term ovine fetuses were exposed to in utero hypoxia, and fetal MCA responses to Ang II were tested for vascular tension, calcium transient, and molecular analysis. Ang II caused significant dose-dependent contraction in control fetal MCA. Ang II-induced MCA constriction was decreased significantly in hypoxic fetuses. Neither losartan (AT1R antagonist, 10−5 mol/L) nor PD123,319 (AT2R antagonist, 10−5 mol/L) altered Ang II-mediated contraction in fetal MCA. Phenylephrine-mediated constriction was also significantly weaker in hypoxic fetuses. Bay K8644 caused similar contractions between the two groups. Protein expression of L-type voltage-dependent calcium channels was unchanged. There were no differences in caffeine-mediated vascular tension or calcium transients. Contraction induced by PDBu (PKC agonist) was obviously weaker in hypoxic MCA. Protein expression of PKCβ was reduced in the hypoxic compared with the control, along with no differences in phosphorylation levels. The results showed that fetal MCA was functionally responsive to Ang II near term. Intrauterine hypoxia reduced the vascular agonist-mediated contraction in fetal MCA, probably via decreasing PKCβ and its phosphorylation, which might play protective effects on fetal cerebral circulation against transient hypoxia.

Restricted access

Yang Chen, Mingyue Zhao, Chenhao Wang, Huaizhen Wen, Yuntao Zhang, Mingxu Lu, Salah Adlat, Tingting Zheng, Mingjiao Zhang, Dan Li, Xiaodan Lu, Mengwei Guo, Hongyu Chen, Luqing Zhang, Xuechao Feng and Yaowu Zheng

Excessive fat accumulation causes obesity and many diseases. Previous study demonstrates VEGFB universal knockout induces obese phenotypes including expansion of white adipose tissue, whitening of brown adipose tissue, increase of fat accumulation and reduction in energy consumption. However, roles of VEGFB in adipose tissues are not clear. In this study, we have generated a mouse model with adipose-specific VEGFB repression using CRISPR/dCas9 system (Vegfb AdipoDown) and investigated the roles of VEGFB in adipose development and energy metabolism. VEGFB repression induced significant changes in adipose tissue structure and function. Vegfb AdipoDown mice have larger body sizes, larger volume of white adipose tissues than its wild type littermates. Adipose-specific VEGFB repression induced morphological and functional transformation of adipose tissues toward white adipose for energy storage. Metabolic processes are broadly changed in Vegfb AdipoDown adipose tissues including carbohydrate metabolism, lipid metabolism, nucleotide metabolism and amino acid metabolism. We have demonstrated that adipose VEGFB repression can recapitulate most of the phenotypes of the whole body VEGFB knockout mouse. Intriguingly, approximately 50% VEGFB repression in adipose tissues can almost completely mimic the effects of universal Vegfb deletion, suggesting adipose VEGFB is a major regulator of energy metabolism and may be important in prevention and treatment of obesity.