Search Results

You are looking at 1 - 6 of 6 items for

  • Author: Hui Li x
Clear All Modify Search
Free access

Ying Wang, Xiao-Hui Wang, Deng-Xuan Fan, Yuan Zhang, Ming-Qing Li, Hai-Xia Wu and Li-Ping Jin

Mammalian proprotein convertases (PCs) play an important role in folliculogenesis, as they proteolytically activate a variety of substrates such as the transforming growth factor beta (TGFβ) superfamily. PC subtilism/kexin 6 (PCSK6) is a member of the PC family and is ubiquitously expressed and implicated in many physiological and pathological processes. However, in human granulosa cells, the expression of the PC family members, their hormonal regulation, and the function of PCs are not clear. In this study, we found that PCSK6 is the most highly expressed PC family member in granulosa cells. LH increased PCSK6 mRNA level and PCSK6 played an anti-apoptosis function in KGN cells. Knockdown of PCSK6 not only increased the secretion of activin A and TGFβ2 but also decreased the secretion of follistatin, estrogen, and the mRNA levels of FSH receptor (FSHR) and P450AROM (CYP19A1). We also found that, in the KGN human granulosa cell line, TGFβ2 and activin A could promote the apoptosis of KGN cells and LH could regulate the follistatin level. These data indicate that PCSK6, which is regulated by LH, is highly expressed in human primary granulosa cells of pre-ovulatory follicles and plays important roles in regulating a series of downstream molecules and apoptosis of KGN cells.

Free access

Run Yu, Martha Cruz-Soto, Sergio Li Calzi, Hongxiang Hui and Shlomo Melmed

Human pituitary tumor-transforming gene 1 (PTTG1) encodes a securin protein critically important in regulating chromosome separation. Murine PTTG (mPTTG) is 66% homologous to human PTTG1 and PTTG-null (PTTG−/−) mice exhibit pancreatic β-cell hypoplasia and abnormal nuclear morphology with resultant diabetes. As we show that ductal β-cell neogenesis is intact in PTTG−/− mice, we explored mechanism for defective β-cell replication. We tested whether mPTTG exhibits securin properties in mouse insulin-secreting insulinoma MIN6 cells, using a live-cell system to monitor mitosis in cells transfected with an enhanced green fluorescent protein (EGFP)-tagged mPTTG conjugate (mPTTG-EGFP). To fulfill the criteria for securin properties, the protein should undergo degradation immediately before the metaphase-to-anaphase transition when expression levels are low, and should inhibit metaphase-to-anaphase transition when expression levels are high. EGFP itself did not undergo degradation throughout mitosis and high levels of EGFP per se did not affect normal mitosis progression (n=25). However, mPTTG-EGFP was degraded 2 min before the metaphase-to-anaphase transition when expression levels were low (n=19), and high mPTTG-EGFP levels blocked metaphase-to-anaphase transition in 13 cells. mPTTG-EGFP inhibited MIN6 cell proliferation and caused apoptosis. Immunocoprecipitation demonstrated binding of mPTTG-EGFP and separase. These results show that mPTTG exhibits properties consistent with a murine securin in insulin-secreting mouse cells and mPTTG overexpression inhibits cell proliferation, suggesting that defective β-cell proliferation observed in PTTG−/− mice is likely due to abnormal cell-cycle progression.

Free access

Chang-Jiang Li, Hui-Wen Sun, Fa-Liang Zhu, Liang Chen, Yuan-Yuan Rong, Yun Zhang and Mei Zhang

In this study, we investigated the in vivo role of adiponectin, an adipocytokine, on the development of atherosclerosis in rabbits mainly using adenovirus expressing adiponectin gene (Ad-APN) and intravascular ultrasonography. Serum adiponectin concentrations in rabbits after Ad-APN local transfer to abdominal aortas increased about nine times as much as those before transfer (P < 0.01), about ten times as much as the levels of endogenous adiponectin in adenovirus expressing β-galactosidase gene (Ad-β gal) treated rabbits (P < 0.01), and about four times as much as those in the aorta of non-injured rabbits on a normal cholesterol diet (P < 0.01). Ultrasonography revealed a significantly reduced atherosclerotic plaque area in abdominal aortas of rabbits infected through intima with Ad-APN, by 35.2% compared with the area before treatment (P < 0.01), and by 35.8% compared with that in Ad-β gal-treated rabbits (P < 0.01). In rabbits infected through adventitia, Ad-APN treatment reduced plaque area by 28.9% as compared with the area before treatment (P < 0.01) and 25.6% compared with that in Ad-β gal-treated rabbits (P < 0.01). Adiponectin significantly suppressed the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1) by 18.5% through intima transfer (P < 0.05) and 26.9% through adventitia transfer (P < 0.01), and intercellular adhesion molecule-1 (ICAM-1) by 40.7% through intima transfer (P < 0.01), and 30.7% through adventitia transfer (P < 0.01). However, adiponectin had no effect on the expression of types I and III collagen. These results suggest that local adiponectin treatment suppresses the development of atherosclerosis in vivo in part by attenuating the expression of VCAM-1 and ICAM-1 in vascular walls.

Free access

Shu-Fang Xia, Xiao-Mei Duan, Xiang-Rong Cheng, Li-Mei Chen, Yan-Jun Kang, Peng Wang, Xue Tang, Yong-Hui Shi and Guo-Wei Le

The study was designed to investigate the possible mechanisms of hepatic microRNAs (miRs) in regulating local thyroid hormone (TH) action and ultimately different propensities to high-fat diet (HFD)-induced obesity. When obesity-prone (OP) and obesity-resistant (OR) mice were fed HFD for 7 weeks, OP mice showed apparent hepatic steatosis, with significantly higher body weight and lower hepatic TH receptor b (TRb) expression and type 1 deiodinase (DIO1) activity than OR mice. Next-generation sequencing technology revealed that 13 miRs in liver were dysregulated between the two phenotypes, of which 8 miRs were predicted to target on Dio1 or TRb. When mice were fed for 17 weeks, OR mice had mild hepatic steatosis and increased Dio1 and TRb expression than OP mice, with downregulation of T3 target genes (including Srebp1c, Acc1, Scd1 and Fasn) and upregulation of Cpt1α, Atp5c1, Cox7c and Cyp7a1. A stem-loop qRT-PCR analysis confirmed that the levels of miR-383, miR-34a and miR-146b were inversely correlated with those of DIO1 or TRb. Down-regulated expression of miR-383 or miR-146b by miR-383 inhibitor (anti-miR-383) or miR-146b inhibitor (anti-miR-146b) in free fatty acid-treated primary mouse hepatocytes led to increased DIO1 and TRb expressions, respectively, and subsequently decreased cellular lipid accumulation, while miR-34a inhibitor (anti-miR-34a) transfection had on effects on TRb expression. Luciferase reporter assay illustrated that miR-146b could directly target TRb 3′untranslated region (3′UTR). These findings suggested that miR-383 and miR-146b might play critical roles in different propensities to diet-induced obesity via targeting on Dio1 and TRb, respectively.

Full access

Baiyang You, Yaoshan Dun, Wenliang Zhang, Lingjun Jiang, Hui Li, Murong Xie, Yuan Liu and Suixin Liu

Mitochondrial quality control (MQC) and function are determinants for cellular energy metabolism, and their disorders are reported to play an important role in the development of insulin resistance (IR). Salidroside was reported to have beneficial effects on MQC through AMPK pathway; however, it is unknown whether salidroside exerts anti-IR effect with this action. This study sought to investigate the effects of salidroside on IR with an exploration of the mechanisms of its action. Experimental IR models were adopted in high-fat-diet (HFD)-fed mice and palmitate-treated C2C12 myotubes, respectively. Blood levels of glucose and insulin as well as cellular glucose uptake were determined, and mitochondrial function and MQC-associated parameters and reactive oxygen species (ROS) production were analyzed based on treatments with the activator (AICAR), inhibitors (compound C and EX-527) or specific siRNA of Ampk/Sirt1 and mitochondrial ROS scavenger (mito-TEMPO). Protein expression level was determined by Western blot, cellular observation by transmission electron microscope and ROS production by functional analysis kits. Salidroside reduced IR and activated insulin signaling along with the stimulation of AMPK/SIRT1 signaling and downstream regulation of MQC and ROS production. These salidroside effects were comparable to those of AICAR and could be prevented by AMPK/SIRT1 inhibitors or siRNAs, respectively. Salidroside reduces IR and regulates MQC and ROS production by activating AMPK/SIRT1 signaling pathway. Since IR is a critical issue for public health, to explore a potent agent against IR is of high interest. The anti-IR effects of salidroside warrant further experimental and clinical studies.

Free access

Yan-Hong Bu, Yu-Ling He, Hou-De Zhou, Wei Liu, Dan Peng, Ai-Guo Tang, Ling-Li Tang, Hui Xie, Qiu-Xia Huang, Xiang-Hang Luo and Er-Yuan Liao

Insulin receptor substrate 1 (IRS1) is an essential molecule for the intracellular signaling of IGF1 and insulin, which are potent anabolic regulators of bone metabolism. Osteoblastic IRS1 is essential for maintaining bone turnover; however, the mechanism underlying this regulation remains unclear. To clarify the role of IRS1 in bone metabolism, we employed RNA interference to inhibit IRS1 gene expression and observed the effects of silencing this gene on the proliferation and differentiation of and the expression of matrix metallopeptidase (MMP) and tumor necrosis factor receptor superfamily, member 11b (TNFRSF11B) in MC3T3-E1 cells. Our results showed that IRS1 short hairpin RNAs can effectively suppress the expression of IRS1, and inhibit the phosphorylation of AKT in IRS1 pathway; reduce the expression of MMP2, MMP3, MMP13, and MMP14, decrease the expression of TNFRSF11B and RANKL (also known as tumor necrosis factor (ligand) superfamily, member 11), however increase the RANKL/TNFRSF11B ratio; decrease cell survival, proliferation, and mineralization, and impair the differentiation of MC3T3-E1 cells. The downregulation of IRS1 had no effect on the expression of MMP1. Our findings suggest that IRS1 not only promotes bone formation and mineralization but also might play roles in bone resorption partly via the regulation of MMPs and RANKL/TNFRSF11B ratio, thus regulates the bone turnover.