Search Results

You are looking at 1 - 4 of 4 items for

  • Author: IS Park x
  • All content x
Clear All Modify Search
Restricted access

M Bendayan and I-S Park

Abstract

The existence of extrapancreatic islets in the duodenal mucosa of the adult rat has been established by morphological studies and the development of these islets has been followed from the early embryonic stage to neonatal and adult life. Like the pancreatic islets, glucagon cells were the first to appear at day 12 of gestation. However, in contrast to the pancreatic islets, insulin was not detected in the extrapancreatic islets until birth. At this stage, the different endocrine cells assume their classical topography, insulin cells being surrounded by non-insulin endocrine cells. In addition, the behaviour of these extrapancreatic islets in diabetic conditions was evaluated on streptozotocin-induced diabetic rats as well as on spontaneous BB Wistar diabetic rats. In both conditions, the extrapancreatic islets were found in the duodenal mucosa but were mainly composed of glucagon cells, the insulin cells having disappeared. These results demonstrate that the extrapancreatic islets are a common normal feature of the rat duodenal mucosa. They appear during fetal development, are present in different strains of rats and behave similarly to the pancreatic islets under spontaneous or chemically induced diabetic conditions. Although their exact role remains to be established, they probably react to local hyperglycaemic environment due to intestinal absorption.

Journal of Endocrinology (1997) 153, 73–80

Free access

IS Park, YZ Che, M Bendayan, SW Kang, and BH Min

Clusterin is a heterodimeric glycoprotein which has been shown to play important roles in programmed cell death and/or in tissue reorganization not only during embryonic development but also in damaged tissues. Recently, we reported the transient induction of clusterin in pancreatic endocrine cells during early developmental stages of islet formation. In the present study, we have investigated the expression of clusterin in pancreatic tissue of streptozotocin-treated rats which were undergoing extensive islet tissue reorganization due to degeneration of insulin beta cells. Clusterin was found in endocrine cells identified as glucagon-secreting alpha cells at the periphery of the islet. Using immunoelectron microscopy, clusterin-positive cells showed the typical ultrastructural features of pancreatic alpha cells. In addition, colocalization of clusterin and glucagon in the same secretory granules was shown by double immunogold labeling. These results imply that clusterin is a secretory molecule having endocrine and/or paracrine actions in parallel with glucagon. Further, we noted that clusterin expression was increased in pancreatic alpha cells during the process of beta cell death upon streptozotocin injection. The increase was significant as early as 1-3 h after streptozotocin treatment prior to any morphological alteration of islet beta cell and any manifestation of hyperglycemia. The expression of clusterin was steady-stately up-regulated during the process of islet reorganization caused by streptozotocin-induced cytotoxic injury. Therefore, we suggest that clusterin might be considered as a molecule induced by both embryonic development and drug-induced reorganization of the endocrine pancreas. Since clusterin expression is up-regulated in alpha cells, but not in beta cells undergoing degeneration, it may play a protective role against the cytotoxic insult.

Free access

BH Min, SY Jeong, SW Kang, BG Crabo, DN Foster, BG Chun, M Bendayan, and IS Park

Clusterin has been known to play important roles not only in remodeling damaged tissues, but also in tissue reorganization during embryonic development. In the present study, we have investigated the expression of clusterin in the endocrine pancreas during embryonic development. Although a weak immunoreaction was detected in some pancreatic primordial cells at day 14 of gestation, distinct clusterin expression was identified by immunocytochemistry and Northern blot analysis at the 16th day of gestation. Clusterin-producing cells, which corresponded to insulin-containing cells, accounted for the major portion of the developing islet of Langerhans up to 18 days of gestation. Thereafter, clusterin-producing cells display similar distribution and morphological features to glucagon-producing cells. Clusterin expressed in the pancreas was shown by Western blot analysis to be a disulfide-linked heterodimer of 70 kDa with an alpha-subunit of 32 kDa. During early developmental stages, however, we found that proteolytic internal cleavage of the clusterin molecule occurred from the 18th day of gestation. Only one 70 kDa band on the 16th day and two bands (32 kDa and 70 kDa) on the 18th day of gestation were detected by Western blot analysis even in reducing conditions, while only a single 32 kDa band was detected on the second day after birth. The levels of clusterin mRNA in the pancreas transiently increased from the 16th day of gestation to the second day after birth, during the period when active cellular reorganization takes place to form the classic cellular features of the islet. Among various tissue (kidney, brain, liver, heart, lung and pancreas) the levels of clusterin mRNA were the highest in the pancreas from the 18th day of gestation to the second day after birth. In contrast, the lowest expression was observed in adult pancreatic tissue. The higher expression of clusterin in developing pancreas must indicate its involvement in tissue organization during development.

Restricted access

GM Weber, JF Powell, M Park, WH Fischer, AG Craig, JE Rivier, U Nanakorn, IS Parhar, S Ngamvongchon, EG Grau, and NM Sherwood

Three forms of gonadotropin-releasing hormone (GnRH) are isolated and identified here by chemical sequence analysis for one species of tilapia, Oreochromis niloticus, and by HPLC elution position for a second species of tilapia, O. mossambicus. Of the three GnRH forms in O. mossambicus, chicken GnRH-II (cGnRH-II) and sea bream GnRH (sbGnRH) are present in greater abundance in the brain and pituitary than salmon GnRH (sGnRH). These three native forms of GnRH are shown to stimulate the release of prolactin (PRL) from the rostral pars distalis (RPD) of the pituitary of O. mossambicus in vitro with the following order of potency: cGnRH-II > sGnRH > sbGnRH. In addition, a mammalian GnRH analog stimulated the release of PRL from the pituitary RPD incubated in either iso-osmotic (320 mosmol/l) or hyperosmotic (355 mosmol/l) medium, the latter normally inhibiting PRL release. The response of the pituitary RPD to GnRH was augmented by co-incubation with testosterone or 17 beta-estradiol. The effects of GnRH on PRL release appear to be direct effects on PRL cells because the RPD of tilapia contains a nearly homogeneous mass of PRL cells without intermixing of gonadotrophs. Our data suggest that GnRH plays a broad role in fish, depending on the species, by affecting not only gonadotropins and growth hormone, but also PRL.