Search Results

You are looking at 1 - 2 of 2 items for

  • Author: J Ian Mason x
  • Refine by access: All content x
Clear All Modify Search
Georgia Papacleovoulou The Queen's Medical Research Institute, Centre for Reproductive Biology, Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK

Search for other papers by Georgia Papacleovoulou in
Google Scholar
PubMed
Close
,
Hilary O D Critchley The Queen's Medical Research Institute, Centre for Reproductive Biology, Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK

Search for other papers by Hilary O D Critchley in
Google Scholar
PubMed
Close
,
Stephen G Hillier The Queen's Medical Research Institute, Centre for Reproductive Biology, Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK

Search for other papers by Stephen G Hillier in
Google Scholar
PubMed
Close
, and
J Ian Mason The Queen's Medical Research Institute, Centre for Reproductive Biology, Reproductive and Developmental Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK

Search for other papers by J Ian Mason in
Google Scholar
PubMed
Close

The human ovarian surface epithelium (hOSE) is a mesothelial layer that surrounds the ovary and undergoes injury and repair cycles after ovulation-associated inflammation. We previously showed that IL4 is a key regulator of progesterone bioavailability during post-ovulatory hOSE repair as it differentially up-regulated 3 β -HSD1 and 3 β -HSD2 mRNA transcripts and total 3β-hydroxysteroid dehydrogenase activity whereas it inhibited androgen receptor (AR) expression. We now show that the pro-inflammatory effect of IL1α on 3 β -HSD1 expression is mediated by nuclear factor-κB (NF-κB), whereas its anti-inflammatory action on 3 β -HSD2 expression is exerted via p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) and NF-κB signalling pathways. The anti-inflammatory IL4 effects on 3 β -HSD1 and 3 β -HSD2 mRNA expression are mediated through STAT6 and PI3K signalling networks. IL4 effects on AR and 3 β -HSD2 expression involve the p38 MAPK pathway. We also document that IL4 up-regulates lysyl oxidase (LOX) mRNA transcripts, a key gene for extracellular matrix (ECM) deposition and inhibits IL1α-induced expression of cyclooxygenase-2 (COX-2) mRNA, a gene involved in breakdown of ECM, showing a further role in post-ovulatory wound healing. We conclude that IL1α and IL4 actions in the post-ovulatory wound healing of hOSE cells are mediated by different signalling transduction pathways. The p38 MAPK signalling pathway may have possible therapeutic benefit in inflammation-associated disorders of the ovary, including cancer.

Free access
Yun-Ju Chen Institute of Physiology, School of Medicine, National Yang-Ming University, 155 Linong Street, Section 2, Taipei 112, Taiwan, Republic of China
Agricultural Biotechnology Research Center,
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Republic of China
Division of Reproductive and Developmental Science, Queen’s Medical Research Institute, Edinburgh University, Edinburgh EH16 4TJ, UK
Institute of Molecular and Cellular Biology, School of Life Science, National Taiwan University, Taipei 106, Taiwan, ROC

Search for other papers by Yun-Ju Chen in
Google Scholar
PubMed
Close
,
Pei-Wen Hsiao Institute of Physiology, School of Medicine, National Yang-Ming University, 155 Linong Street, Section 2, Taipei 112, Taiwan, Republic of China
Agricultural Biotechnology Research Center,
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Republic of China
Division of Reproductive and Developmental Science, Queen’s Medical Research Institute, Edinburgh University, Edinburgh EH16 4TJ, UK
Institute of Molecular and Cellular Biology, School of Life Science, National Taiwan University, Taipei 106, Taiwan, ROC

Search for other papers by Pei-Wen Hsiao in
Google Scholar
PubMed
Close
,
Ming-Ting Lee Institute of Physiology, School of Medicine, National Yang-Ming University, 155 Linong Street, Section 2, Taipei 112, Taiwan, Republic of China
Agricultural Biotechnology Research Center,
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Republic of China
Division of Reproductive and Developmental Science, Queen’s Medical Research Institute, Edinburgh University, Edinburgh EH16 4TJ, UK
Institute of Molecular and Cellular Biology, School of Life Science, National Taiwan University, Taipei 106, Taiwan, ROC

Search for other papers by Ming-Ting Lee in
Google Scholar
PubMed
Close
,
J Ian Mason Institute of Physiology, School of Medicine, National Yang-Ming University, 155 Linong Street, Section 2, Taipei 112, Taiwan, Republic of China
Agricultural Biotechnology Research Center,
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Republic of China
Division of Reproductive and Developmental Science, Queen’s Medical Research Institute, Edinburgh University, Edinburgh EH16 4TJ, UK
Institute of Molecular and Cellular Biology, School of Life Science, National Taiwan University, Taipei 106, Taiwan, ROC

Search for other papers by J Ian Mason in
Google Scholar
PubMed
Close
,
Ferng-Chun Ke Institute of Physiology, School of Medicine, National Yang-Ming University, 155 Linong Street, Section 2, Taipei 112, Taiwan, Republic of China
Agricultural Biotechnology Research Center,
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Republic of China
Division of Reproductive and Developmental Science, Queen’s Medical Research Institute, Edinburgh University, Edinburgh EH16 4TJ, UK
Institute of Molecular and Cellular Biology, School of Life Science, National Taiwan University, Taipei 106, Taiwan, ROC

Search for other papers by Ferng-Chun Ke in
Google Scholar
PubMed
Close
, and
Jiuan-Jiuan Hwang Institute of Physiology, School of Medicine, National Yang-Ming University, 155 Linong Street, Section 2, Taipei 112, Taiwan, Republic of China
Agricultural Biotechnology Research Center,
Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, Republic of China
Division of Reproductive and Developmental Science, Queen’s Medical Research Institute, Edinburgh University, Edinburgh EH16 4TJ, UK
Institute of Molecular and Cellular Biology, School of Life Science, National Taiwan University, Taipei 106, Taiwan, ROC

Search for other papers by Jiuan-Jiuan Hwang in
Google Scholar
PubMed
Close

Transforming growth factor (TGF) β1 facilitates FSH-induced differentiation of rat ovarian granulosa cells. The signaling crosstalk between follicle stimulating hormone (FSH) and TGFβ receptors remains unclear. This study was to investigate the interplay of cAMP/protein kinase A (PKA) and phosphatidylinositol-3-kinase (PI3K) signaling including mammalian target of rapamycin (mTOR)C1 dependence in FSH- and TGFβ1-stimulated steroidogenesis in rat granulosa cells. To achieve this aim, inhibitors of PKA (PKAI), PI3K (wortmannin), and mTORC1 (rapamycin) were employed. PKAI and wortmannin suppressions of the FSH-increased progesterone production were partly attributed to decreased level of 3β-HSD, and their suppression of the FSH plus TGFβ1 effect was attributed to the reduction of all the three key players, steroidogenic acute regulatory (StAR) protein, P450scc, and 3β-HSD. Further, FSH activated the PI3K pathway including increased integrin-linked kinase (ILK) activity and phosphorylation of Akt(S473), mTOR(S2481), S6K(T389), and transcription factors particularly FoxO1(S256) and FoxO3a(S253), which were reduced by wortmannin treatment but not by PKAI. Interestingly, PKAI suppression of FSH-induced phosphorylation of cAMP regulatory element-binding protein (CREB(S133)) disappeared in the presence of wortmannin, suggesting that wortmannin may affect intracellular compartmentalization of signaling molecule(s).

In addition, TGFβ1 had no effect on FSH-activated CREB and PI3K signaling mediators. We further found that rapamycin reduced the TGFβ1-enhancing effect of FSH-stimulated steroidogenesis, yet it exhibited no effect on FSH action. Surprisingly, rapamycin displayed a suppressive effect at concentrations that had no effect on mTORC1 activity. Together, this study demonstrates a delicate interplay between cAMP/PKA and PI3K signaling in FSH and TGFβ1 regulation of steroidogenesis in rat granulosa cells. Furthermore, we demonstrate for the first time that TGFβ1 acts in a rapamycin-hypersensitive and mTORC1-independent manner in augmenting FSH-stimulated steroidogenesis in rat granulosa cells.

Free access