Search Results

You are looking at 1 - 2 of 2 items for

  • Author: J Kero x
Clear All Modify Search
Free access

Rilianawati, J Kero, T Paukku and I Huhtaniemi

We have developed a transgenic (TG) mouse model for tumorigenesis of gonadal somatic cells using a 6 kb fragment of the mouse inhibin-alpha subunit promoter (Inh-alpha) fused with the simian virus 40 T-antigen (Tag) coding sequence. Gonadal tumors, of Leydig or granulosa cell origin, develop in the TG mice with 100% penetrance by the age of 5-8 months. Conspicuously, if the mice are gonadectomized, they develop adrenal tumors. Gonadal and adrenal tumorigenesis in these mice seem to be gonadotropin dependent. On the other hand, testosterone stimulates the proliferation of a cell line (C alpha 1) established from one of the adrenal tumors. The purpose of the present study was therefore to investigate further whether testosterone affects the growth of these gonadal and adrenal tumors in vivo. Two experimental models were used: (1) Tag TG/hypogonadotropic (hpg) double mutant mice and (2) castrated Tag TG mice. Both were treated between 1-2 and 7-8 months of age with Silastic rods (length 2 cm) containing testosterone. None of the control or testosterone-treated Tag/hpg mice developed gonadal or adrenal tumors. The castrated Tag TG mice displayed, upon microscopical examination, early stages of adrenal tumors, whereas those receiving testosterone did not show such changes. Testosterone increased the weights of gonads in the Tag/hpg mice, and those of uteri and seminal vesicles in both groups. In contrast, the adrenal weights were significantly reduced in both groups by testosterone treatment. Gonadal histology of the testosterone-treated mice showed hyperplasia of testicular Leydig cells and ovarian stroma. Spermatogenesis was induced by testosterone in the Tag/hpg mice. Adrenal histology of the testosterone-treated animals demonstrated the disappearance of the X-zone. Serum levels of FSH in testosterone-treated Tag/hpg mice were significantly increased, while those of serum LH were decreased. In conclusion, the present result indicate that the suppression of gonadotropins by testosterone implants in castrated Inh-alpha/Tag TG mice prevents the tumorigenesis of their adrenals. In intact Tag/hpg mice, testosterone implants were not able to induce gonadal or adrenal tumorigenesis. Although testosterone treatment was able to induce interstitial cell hyperplasia in gonads of the Inh-alpha/Tag mice, direct gonadotropin action is responsible for gonadal and adrenal tumorigenesis.

Free access

M Tena-Sempere, J Kero, A Rannikko and I Huhtaniemi

In the rat, the cytotoxic drug ethylene dimethane sulfonate (EDS) selectively eliminates mature Leydig cells (LCs) from testicular interstitium, activating a complex process of proliferation and differentiation of pre-existing LC precursors. We observed previously that after EDS treatment, the early LC precursors persistently express a truncated 1.8 kb form of LH receptor (LHR) mRNA. This prompted us to study whether experimental cryptorchidism, known to alter the process of LC repopulation, can influence the pattern of testicular LHR mRNA expression after EDS administration. EDS treatment completely eliminated mature LCs both in control and unilaterally cryptorchid (UC) rats. This response was followed by gradual reappearance of newly formed, functionally active LCs, as evidenced by the recovery in testicular LHR content and plasma testosterone levels in both experimental groups. Noteworthy, the rate of LC repopulation was higher in the abdominal testes of UC rats, in keeping with previous findings. Interestingly, the 1.8 kb LHR transcript was persistently expressed in scrotal testes at all time-points, but undetectable upon Northern hybridization in abdominal testes at early stages after EDS administration, when low levels of expression of truncated LHR transcripts could only be detected by semi-quantitative RT-PCR analysis. In addition, the faster LC repopulation in cryptorchid testes was associated with precocious recovery of the complete array of LHR mRNA transcripts, including the 1.8 kb species. These changes appeared acutely and irreversibly, as unilateral positioning of scrotal testes into the abdomen resulted in a rapid loss of expression of the 1.8 kb LHR transcript, whereas scrotal relocation of the UC testes failed to alter the pattern of LHR gene expression. In conclusion, experimental cryptorchidism changes the pattern of LHR mRNA expression in rat testis after selective LC destruction by EDS. This change, i.e. repression of the 1.8 kb LHR transcript after EDS administration, is acute and irreversible, and likely related to the impairment of testicular microenvironment following cryptorchidism. However, even though at low levels, the expression of truncated forms of LHR mRNA appears to be a universal feature of proliferating LC precursors. The UC testis may represent a good model for analysis of the regulatory signals involved in the control of LHR gene expression.