Search Results

You are looking at 1 - 4 of 4 items for

  • Author: J Rubinstein x
  • Refine by Access: All content x
Clear All Modify Search
Restricted access


Department of Neuroendocrinology, Centro de Investigaciones Médicas Albert Einstein (CIMAE), Luis Viale 2831, Buenos Aires, Argentina and *Department of Obstetrics and Gynecology, UCLA School of Medicine, Los Angeles, California, U.S.A.

(Received 18 January 1977)

It is generally accepted that the administration of androgens to female rats in the neonatal period suppresses cyclic gonadotrophin release and a tonic gonadotrophin release occurs (Barraclough, 1966; Gorski, 1971). The tonic or male gonadotrophin pattern characteristically shows higher levels of plasma and pituitary follicle-stimulating hormone (FSH) and serum prolactin compared with female rats (Johnson, 1967, 1971; Kragt & Ganong, 1968; Neill, 1972).

In spite of the fact that the neonatal administration of androgens also induces changes in the reproductive physiology of adult male rats (Johnson & Witscht, 1963; Johnson, Yasuda & Sridharan, 1964; Morrison & Johnson, 1966), the effect of androgenization on gonadotrophin secretion in this sex is not clear.

The purpose of the present study

Free access

O Nilsson, D Chrysis, O Pajulo, A Boman, M Holst, J Rubinstein, E Martin Ritzen, and L Savendahl

Sex steroids are required for a normal pubertal growth spurt and fusion of the human epiphyseal growth plate. However, the localization of sex steroid receptors in the human pubertal growth plate remains controversial. We have investigated the expression of estrogen receptor (ER) alpha, ERbeta and androgen receptor (AR) in biopsies of proximal tibial growth plates obtained during epiphyseal surgery in 16 boys and eight girls. All pubertal stages were represented (Tanner stages 1-5). ERalpha, ERbeta and AR were visualized with immunohistochemistry and the number of receptor-positive cells was counted using an image analysis system. Percent receptor-positive chondrocytes were assessed in the resting, proliferative and hypertrophic zones and evaluated for sex differences and pubertal trends. Both ERalpha- and ERbeta-positive cells were detected at a greater frequency in the resting and proliferative zones than in the hypertrophic zone (64+/-2%, 64+/-2% compared with 38+/-3% for ERalpha, and 63+/-3%, 66+/-3% compared with 53+/-3% for ERbeta), whereas AR was more abundant in the resting (65+/-3%) and hypertrophic zones (58+/-3%) than in the proliferative zone (41+/-3%). No sex difference in the patterns of expression was detected. For ERalpha and AR, the percentage of receptor-positive cells was similar at all Tanner pubertal stages, whereas ERbeta showed a slight decrease in the proliferative zone during pubertal development (P<0.05). In summary, our findings suggest that ERalpha, ERbeta and AR are expressed in the human growth plate throughout pubertal development, with no difference between the sexes.

Free access

Isabel García-Tornadú, Marcelo Rubinstein, Bruce D Gaylinn, David Hill, Edith Arany, Malcolm J Low, Graciela Díaz-Torga, and Damasia Becu-Villalobos

Recently, the importance of the dopaminergic D2 receptor (D2R) subtype in normal body growth and neonatal GH secretion has been highlighted. Disruption of D2R alters the GHRH–GH–IGF-I axis and impairs body growth in adult male mice. The D2R knockout (KO) dwarf mouse has not been well characterized; we therefore sought to determine somatotrope function in the adult pituitary. Using immunohistochemistry and confocal microscopy, we found a significant decrease in the somatotrope population in pituitaries from KO mice (P=0.043), which was paralleled by a decreased GH output from pituitary cells cultured in vitro. In cells from adult mice the response amplitude to GHRH differed between genotypes (lower in KO), but this difference was less dramatic after taking into account the lower basal release and hormone content in the KO cells. Furthermore, there were no significant differences in cAMP generation in response to GHRH between genotypes. By Western blot, GHRH-receptor in pituitary membranes from KO mice was reduced to 46% of the level found in wildtype (WT) mice (P=0.016). Somatostatin induced a concentration-dependent decrease in GH and prolactin (PRL) secretion in both genotypes, and 1×10−7 M ghrelin released GH in cells from both genotypes (P=0.017) in a proportionate manner to basal levels. These results suggest that KO somatotropes maintain a regulated secretory function. Finally, we tested the direct effect of dopamine on GH and PRL secretion in cells from both genotypes at 20 days and 6 months of life. As expected, we found that dopamine could reduce PRL levels at both ages in WT mice but not in KO mice, but there was no consistent effect of the neurotransmitter on GH release in either genotype at the ages studied. The present study demonstrates that in the adult male D2R KO mouse, there is a reduction in pituitary GH content and secretory activity. Our results point to an involvement of D2R signaling at the hypothalamic level as dopamine did not release GH acting at the pituitary level either in 1-month-old or adult mice. The similarity of the pituitary defect in the D2R KO mouse to that of GHRH-deficient models suggests a probable mechanism. A loss of dopamine signaling via hypothalamic D2Rs at a critical age causes the reduced release of GHRH from hypophyseotropic neurons leading to inadequate clonal expansion of the somatotrope population. Our data also reveal that somatotrope cell number is much more sensitive to changes in neonatal GHRH input than their capacity to develop properly regulated GH-secretory function.

Free access

Hui Yu, Zoe Thompson, Sylee Kiran, Graham L Jones, Lakshmi Mundada, Surbhi, Marcelo Rubinstein, and Malcolm J Low

Proopiomelanocortin (POMC) neurons in the hypothalamic arcuate nucleus (ARC) are essential for normal energy homeostasis. Maximal ARC Pomc transcription is dependent on neuronal Pomc enhancer 1 (nPE1), located 12 kb upstream from the promoter. Selective deletion of nPE1 in mice decreases ARC Pomc expression by 70%, sufficient to induce mild obesity. Because nPE1 is located exclusively in the genomes of placental mammals, we questioned whether its hypomorphic mutation would also alter placental Pomc expression and the metabolic adaptations associated with pregnancy and lactation. We assessed placental development, pup growth, circulating leptin and expression of Pomc, Agrp and alternatively spliced leptin receptor (LepR) isoforms in the ARC and placenta of Pomc∆1/∆1 and Pomc+/+ dams. Despite indistinguishable body weights, lean mass, food intake, placental histology and Pomc expression and overall pregnancy outcomes between the genotypes, Pomc ∆1/∆1 females had increased pre-pregnancy fat mass that paradoxically decreased to control levels by parturition. However, Pomc∆1/∆1 dams had exaggerated increases in circulating leptin, up to twice of that of the typically elevated levels in Pomc+/+ mice at the end of pregnancy, despite their equivalent fat mass. Pomc∆1/∆1 dams also had increased placental expression of soluble leptin receptor (LepRe), although the protein levels of LEPRE in circulation were the same as Pomc+/+ controls. Together, these data suggest that the hypomorphic Pomc∆1/∆1 allele is responsible for the perinatal super hyperleptinemia of Pomc∆1/∆1 dams, possibly due to upregulated leptin secretion from individual adipocytes.