Search Results

You are looking at 1 - 2 of 2 items for

  • Author: J T Dickey x
  • Refine by access: All content x
Clear All Modify Search
M Shimizu
Search for other papers by M Shimizu in
Google Scholar
PubMed
Close
,
J T Dickey
Search for other papers by J T Dickey in
Google Scholar
PubMed
Close
,
H Fukada
Search for other papers by H Fukada in
Google Scholar
PubMed
Close
, and
W W Dickhoff
Search for other papers by W W Dickhoff in
Google Scholar
PubMed
Close

Western ligand blotting of salmon serum typically reveals three insulin-like growth factor (IGF) binding proteins (IGFBPs) at 22, 28 and 41 kDa. Physiologic regulation of the 22 kDa IGFBP is similar to that of mammalian IGFBP-1; it is increased in catabolic states such as fasting and stress. On the other hand, its molecular mass on Western ligand blotting is closest to mammalian IGFBP-4. The conflict between physiology and molecular mass makes it difficult to determine the identity of the 22 kDa IGFBP. This study therefore aimed to identify the 22 kDa IGFBP from protein and cDNA sequences. The 22 kDa IGFBP was purified from chinook salmon serum by a combination of IGF-affinity chromatography and reverse-phase chromatography. The N-terminal aminoacid sequence of the purified protein was used to design degenerate primers. Degenerate PCR with liver template amplified a partial IGFBP cDNA, and full-length cDNA was obtained by 5′- and 3′-rapid amplification of cDNA ends (RACE). The 1915-bp cDNA clone encodes a 23.8 kDa IGFBP, and its N-terminal amino-acid sequence matched that of purified 22 kDa IGFBP. Sequence comparison with six human IGFBPs revealed that it is most similar to IGFBP-1 (40% identity and 55% similarity). These findings indicate that salmon 22 kDa IGFBP is IGFBP-1. Salmon IGFBP-1 mRNA is predominantly expressed in the liver, and its expression levels appear to reflect circulating levels. The 3′-untranslated region of salmon IGFBP-1 mRNA contains four repeats of the nucleotide sequence ATTTA, which is involved in selective mRNA degradation. In contrast, amino-acid sequence analysis revealed that salmon IGFBP-1 does not have an Arg-Gly-Asp (RGD) integrin recognition sequence nor a Pro, Glu, Ser and Thr (PEST)-rich domain (a segment involved in rapid turnover of protein), both of which are characteristic of mammalian IGFBP-1. These findings suggest that association with the cell surface and turnover rate may differ between salmon and mammalian IGFBP-1.

Free access
A L Pierce Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by A L Pierce in
Google Scholar
PubMed
Close
,
J T Dickey Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by J T Dickey in
Google Scholar
PubMed
Close
,
L Felli Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by L Felli in
Google Scholar
PubMed
Close
,
P Swanson Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by P Swanson in
Google Scholar
PubMed
Close
, and
W W Dickhoff Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA
Integrative Fish Biology Program, School of Aquatic and Fishery Sciences, Northwest Fisheries Science Center, National Marine Fisheries Service, 2725 Montlake Boulevard E., Seattle, Washington 98112, USA

Search for other papers by W W Dickhoff in
Google Scholar
PubMed
Close

Igf1 and Igf2 stimulate growth and development of vertebrates. Circulating Igfs are produced by the liver. In mammals, Igf1 mediates the postnatal growth-promoting effects of growth hormone (Gh), whereas Igf2 stimulates fetal and placental growth. Hepatic Igf2 production is not regulated by Gh in mammals. Little is known about the regulation of hepatic Igf2 production in nonmammalian vertebrates. We examined the regulation of igf2 mRNA level by metabolic hormones in primary cultured coho salmon hepatocytes. Gh, insulin, the glucocorticoid agonist dexamethasone (Dex), and glucagon increased igf2 mRNA levels, whereas triiodothyronine (T3) decreased igf2 mRNA levels. Gh stimulated igf2 mRNA at physiological concentrations (0.25×10−9 M and above). Insulin strongly enhanced Gh stimulation of igf2 at low physiological concentrations (10−11 M and above), and increased basal igf2 (10−8 M and above). Dex stimulated basal igf2 at concentrations comparable to those of stressed circulating cortisol (10−8 M and above). Glucagon stimulated basal and Gh-stimulated igf2 at supraphysiological concentrations (10−7 M and above), whereas T3 suppressed basal and Gh-stimulated igf2 at the single concentration tested (10−7 M). These results show that igf2 mRNA level is highly regulated in salmon hepatocytes, suggesting that liver-derived Igf2 plays a significant role in salmon growth physiology. The synergistic regulation of igf2 by insulin and Gh in salmon hepatocytes is similar to the regulation of hepatic Igf1 production in mammals.

Free access