Search Results
You are looking at 1 - 1 of 1 items for
- Author: J. C. STOOF x
- Refine by access: All content x
Search for other papers by J. KAPLANSKI in
Google Scholar
PubMed
Search for other papers by A. M. L. VAN DELFT in
Google Scholar
PubMed
Search for other papers by C. NYAKAS in
Google Scholar
PubMed
Search for other papers by J. C. STOOF in
Google Scholar
PubMed
Search for other papers by P. G. SMELIK in
Google Scholar
PubMed
SUMMARY
Injection of 250 μg 6-hydroxydopamine (6-OHDA) into the lateral ventricle of adult male and female rats resulted 1 week later in: (1) a lowered brain content of noradrenaline to 20% and dopamine to 40–50% that of control levels but no change in brain serotonin content; (2) a slight reduction in male and no change in female body weight; (3) no change in adrenal weight; (4) minor or no changes in diurnal pituitary–adrenal periodicity or in the responsiveness of this system to ether stress, laparotomy or exposure to a strange environment and handling. Dexamethasone blockade of the diurnal rise in adrenocortical activity was also unchanged.
Intracerebral administration of 200 μg 6-OHDA to newborn male and female rats in three sequential doses of 40, 60 and 100 μg, resulted at 12 weeks of age in (1) a lowered brain content of noradrenaline and dopamine to 10% that of control levels but no change in brain serotonin; (2) a 30% decrease in body weight; (3) no change in adrenal weight; (4) minor or no changes in pituitary–adrenal periodicity nor in the responsiveness to ether stress and exposure to a strange environment and handling.
When minor changes after 6-OHDA treatment of adult or neonatal rats were found, they always pointed to a stimulatory function of brain catecholamines in pituitary–adrenal activity. It is concluded however that a severe and chronic depletion of brain catecholaminergic systems has no important consequences for the normal functioning of the pituitary–adrenal system.