Search Results

You are looking at 1 - 1 of 1 items for

  • Author: J. Oben x
  • All content x
Clear All Modify Search
Restricted access

J. Oben, L. Morgan, J. Fletcher, and V. Marks

ABSTRACT

The effect of gastric inhibitory polypeptide (GIP), glucagon-like peptide-1(7–36) amide, (GLP-1(7–36) amide), glucagon-like peptide-2 (GLP-2), glucagon and insulin on fatty acid synthesis in explants of rat adipose tissue from various sites was investigated. GIP, GLP-1(7–36) amide and insulin stimulated fatty acid synthesis, as determined by measuring the incorporation of [14C]acetate into saponifiable fat, in a dose-dependent manner, over the concentration range 5–15 ng/ml (0·87–2·61 nmol/l) for insulin and 0·5–7·5 ng/ml for GIP (0·10–1·50 nmol/l) and GLP-1(7–36) amide (0·15–2·27 nmol/l). Insulin and GIP caused a significantly greater stimulation of [14C]acetate incorporation into fatty acids in omental adipose tissue than in either epididymal or subcutaneous adipose tissue. Both GIP and GLP-1(7–36) amide had the ability to stimulate fatty acid synthesis within the physiological range of the circulating hormones. At lower concentrations of the hormones, GLP-1(7–36) amide was a more potent stimulator of fatty acid synthesis than GIP in omental adipose tissue culture; the basal rate of fatty acid synthesis was 0·41±0·03 pmol acetate incorporated/mg wet weight tissue per 2 h; at 0·10 nmol hormone/l 1·15±0·10 and 3·40±0·12 pmol acetate incorporated/mg wet weight tissue per 2 h for GIP and GLP-1(7–36) amide respectively (P < 0·01). GLP-2 and glucagon were without effect on fatty acid synthesis in omental adipose tissue. The study indicates that GIP and GLP-1(7–36) amide, in addition to stimulating insulin secretion, may play a direct physiological role in vivo, in common with insulin, in promoting fatty acid synthesis in adipose tissue.

Journal of Endocrinology (1991) 130, 267–272