Search Results

You are looking at 1 - 10 of 17 items for

  • Author: JA Gustafsson x
  • Refine by access: All content x
Clear All Modify Search
JA Gustafsson
Search for other papers by JA Gustafsson in
Google Scholar
PubMed
Close
Free access
BO Nilsson
Search for other papers by BO Nilsson in
Google Scholar
PubMed
Close
,
E Ekblad
Search for other papers by E Ekblad in
Google Scholar
PubMed
Close
,
T Heine
Search for other papers by T Heine in
Google Scholar
PubMed
Close
, and
JA Gustafsson
Search for other papers by JA Gustafsson in
Google Scholar
PubMed
Close

Micromolar concentrations of the biologically active oestrogen 17beta-oestradiol reduce agonist-induced force in vascular preparations through an unidentified mechanism. The aim of the present study was to investigate the importance of oestrogen receptor beta (ERbeta) for oestrogen-induced vascular relaxation. 17beta-oestradiol was added to aortic rings from ERbeta knock-out (-/-) and wild-type (+/+) mice precontracted with noradrenaline. 17beta-oestradiol caused a concentration-dependent (1-100 microM) relaxation of aortic rings from both -/- and +/+ animals of both sexes. Rings from male and female -/- mice were more sensitive to 17beta-oestradiol than those from +/+ mice. Medial thickness, determined by computerized image analysis, was similar in rings from -/- and +/+ animals. Endothelium, as determined by immuno-cytochemistry, was present in -/- and +/+ aorta. Maximal noradrenaline evoked force and sensitivity to noradrenaline were similar in both groups. In summary ERbeta modulates vascular relaxation to microM concentrations of oestrogen; lack of ERbeta renders the vascular wall supersensitive to 17beta-oestradiol. Lack of ERbeta caused no change in vascular wall morphology suggesting that this ER subtype is not involved in vascular structure development.

Free access
M Liang
Search for other papers by M Liang in
Google Scholar
PubMed
Close
,
E Ekblad
Search for other papers by E Ekblad in
Google Scholar
PubMed
Close
,
JA Gustafsson
Search for other papers by JA Gustafsson in
Google Scholar
PubMed
Close
, and
BO Nilsson
Search for other papers by BO Nilsson in
Google Scholar
PubMed
Close

The objective of this study was to investigate the effects of oestrogen receptor (ER) beta activation on vascular protein synthesis and protein expression. Nuclear immunoreactivity towards ER beta was observed abundantly in vascular smooth muscle and endothelial cells of mouse aorta. No ER alpha-positive cell nuclei were observed. In aorta from ovariectomized mice, treatment with the selective ER beta agonist genistein (100 nM) for 24 h increased [(3)H]leucine incorporation by about 30%. This effect was prevented by the ER blocker ICI 182780 (10 microM). Although genistein treatment stimulated protein synthesis, it caused no change in total protein determined either by the Lowry method on tissue homogenate or by densitometric scanning of protein bands (10-220 kDa) separated by SDS-PAGE. Separation of [(35)S]methionine-labelled proteins by SDS-PAGE did not reveal the protein(s) stimulated by genistein. DNA synthesis was not affected by 100 nM genistein, suggesting that genistein-induced stimulation of protein synthesis is not part of a growth response. Protein expression, determined by SDS-PAGE, was similar in aorta from ER beta-knockout and wild-type mice, suggesting that expression of vascular proteins does not depend solely on a functional ER beta gene. We suggest that activation of vascular ER beta stimulates synthesis of proteins and that this response is not associated with vascular growth.

Free access
A. Mode
Search for other papers by A. Mode in
Google Scholar
PubMed
Close
,
J.-Å. Gustafsson
Search for other papers by J.-Å. Gustafsson in
Google Scholar
PubMed
Close
,
P. Södersten
Search for other papers by P. Södersten in
Google Scholar
PubMed
Close
, and
P. Eneroth
Search for other papers by P. Eneroth in
Google Scholar
PubMed
Close

ABSTRACT

Masculine sexual behaviour was induced in castrated sexually inactive but experienced male rats by testosterone-filled constant-release implants or daily injections of the synthetic androgen 17β-hydroxy-17α-methyl-estra-4,9,11-triene-3-one (methyltrienolone, R 1881), which resists metabolism by target organs. Feminization of the hepatic androgen metabolism by subcutaneous implantation of osmotic minipumps, which delivered a constant amount of human GH, did not affect the behavioural response of castrated rats to testosterone. Testosterone implants were only minimally effective in inducing male behaviour in ovariectomized female rats, but R 1881 was as effective in stimulating male behaviour in females as in males. Testosterone-treated but not R 1881-treated females showed pronounced female sexual behaviour in response to progesterone treatment despite the absence of measureable amounts of oestradiol-17β in peripheral blood. The results provide evidence that masculine sexual behaviour can be activated by an androgen in the absence of oestrogenic stimulation and suggest that the sex difference in the behavioural response to testosterone may be due to a sex difference in the metabolism of androgens by the brain.

J. Endocr. (1984) 100, 245–248

Restricted access
M. Warner
Search for other papers by M. Warner in
Google Scholar
PubMed
Close
,
P. Tollet
Search for other papers by P. Tollet in
Google Scholar
PubMed
Close
,
M. Strömstedt
Search for other papers by M. Strömstedt in
Google Scholar
PubMed
Close
,
K. Carlström
Search for other papers by K. Carlström in
Google Scholar
PubMed
Close
, and
J.-Å. Gustafsson
Search for other papers by J.-Å. Gustafsson in
Google Scholar
PubMed
Close

ABSTRACT

In an effort to understand the physiological functions of cytochrome P-450 in the central nervous system and pituitary gland, we evaluated changes in the level of the enzyme as a function of the endocrine status of rats and the ability of these tissues to synthesize or degrade steroids. The P-450 content of microsomes prepared from the hypothalamic preoptic area (HPOA), the olfactory lobes and the cerebrum was 0·040 ± 0·009 and in the pituitary gland 2·2 ± 0·6 (s.d.) nmol/g tissue. The P-450 content of the HPOA and olfactory lobes, but not of the rest of the cerebrum, was influenced by the endocrine status of rats. In microsomes it increased five- to tenfold over control levels during late pregnancy in the olfactory lobes and during lactation in the HPOA, and in both brain regions treatment of rats with 5α-dihydrotestosterone (DHT) caused an eight- to tenfold increase in the P-450 content. Androstenedione was not a good substrate for brain P-450. The level of androstenedione 19-hydroxylase in the olfactory lobe microsomal fraction was 0·50± 0·06 nmol 19-hydroxyandrostenedione formed/g tissue per h. This activity was tenfold lower in other brain areas and was not detectable in the pituitary gland. The rate of aromatization of androstenedione to oestradiol in the HPOA and olfactory lobe of lactating rats was 0·46 ± 0·14 and 0·38 ± 0·05 pmol/oestradiol formed/g tissue per h respectively. 5α-Androstane-3β,17β-diol (A-5α-3β,17β-diol) was a much better substrate for P-450 throughout the brain and pituitary gland. Catalytic activity was 125 ± 46 and 307 ±108 nmol triols formed/g tissue per h in the brain and pituitary gland respectively. The P-450 responsible for this catalytic activity was isolated and its substrate specificity examined. In addition to A-5α-3β,17β-diol, 5-androstene-3β,17β-diol, dehydroepiandrosterone and DHT were also substrates, with turnover numbers of 27, 8, 12 and 1 mol product/mol P-450 per min respectively. None of these catalytic activities was induced in the rat brain during pregnancy, lactation or DHT treatment. The enzyme was also present in the brains of mice but not guinea-pigs.

The yield of P-450 from the mitochondrial fraction of the HPOA and olfactory lobes in control rats was 0·01–0·02 nmol/g tissue. This increased tenfold during pregnancy. Immunological evidence for the presence of the cholesterol side-chain cleavage enzyme P-450 SCC was found in the HPOA and olfactory lobes of pregnant but not of control rats. However, no SCC catalytic activity was detectable in these brain mitochondrial P-450 fractions. From these studies we conclude that there is a major influence of the endocrine system on the content and quality of P-450 in the brain. However, the function and substrate specificities of these P-450s as well as of those in the pituitary gland remain to be characterized.

Journal of Endocrinology (1989) 122, 341–349

Restricted access
C D Soontjens
Search for other papers by C D Soontjens in
Google Scholar
PubMed
Close
,
J J Rafter
Search for other papers by J J Rafter in
Google Scholar
PubMed
Close
, and
J-Å Gustafsson
Search for other papers by J-Å Gustafsson in
Google Scholar
PubMed
Close

Introduction

Nuclear receptors

The cell's long-term response to environmental stimuli is associated with changes in cellular proliferation, differentiation and metabolism mediated by the modification of the protein content of a cell via differential gene expression. Transcription factors that regulate the activity of specific genes receive such stimuli in different ways. Peptide hormones, growth factors and neurotransmitters bind and activate cell surface receptors, initiating a cascade of intracellular signals by a complex system of secondary messengers that leads to the activation of transcription factors. Other transcription factors that are responsive to steroid and thyroid hormones, retinoids and other signalling molecules belong to the distinct class of nuclear receptors present in the cytoplasm or nucleus. Direct and high affinity binding of a specific signalling molecule or ligand activates the nuclear receptors to exert control on the rate of transcription of target genes via interaction with specific DNA sequences

Restricted access
S. Jeffery
Search for other papers by S. Jeffery in
Google Scholar
PubMed
Close
,
C. A. Wilson
Search for other papers by C. A. Wilson in
Google Scholar
PubMed
Close
,
A. Mode
Search for other papers by A. Mode in
Google Scholar
PubMed
Close
,
J.-Å. Gustafsson
Search for other papers by J.-Å. Gustafsson in
Google Scholar
PubMed
Close
, and
N. D. Carter
Search for other papers by N. D. Carter in
Google Scholar
PubMed
Close

ABSTRACT

Rat liver exhibits a reversed sexual dimorphism of its two endogenous soluble carbonic anhydrase (CA) isozymes, CA II and CA III. Normal males have hepatic CA III concentrations ten–twenty times those in the female, while female liver contains two–three times more CA II than the male. Hypophysectomy abolishes this sexual differentiation, having no effect on male liver but producing isozyme concentrations in the female liver similar to those in the male. Infusion of a continuous level of GH into male rats induces a female-like isozyme pattern for both CA II and CA III.

J. Endocr. (1986) 110, 123–126

Restricted access
A. Mode
Search for other papers by A. Mode in
Google Scholar
PubMed
Close
,
E. Wiersma-Larsson
Search for other papers by E. Wiersma-Larsson in
Google Scholar
PubMed
Close
,
A. Ström
Search for other papers by A. Ström in
Google Scholar
PubMed
Close
,
P. G. Zaphiropoulos
Search for other papers by P. G. Zaphiropoulos in
Google Scholar
PubMed
Close
, and
J.-Å. Gustafsson
Search for other papers by J.-Å. Gustafsson in
Google Scholar
PubMed
Close

ABSTRACT

The effects of GH on the major constitutive sex-specific forms of cytochrome P-450 (P-45015β and P-45016α) were studied in hypophysectomized rats at the mRNA level. Time-course experiments were performed with or without simultaneous treatment with thyroxine and cortisol. Intermittent administration of GH, mimicking the male secretory pattern, caused complete masculinization of the male specific P-45016α at a pretranslational level in the absence and presence of thyroxine and cortisol. When GH was administered continuously, mimicking the female secretory pattern, the female specific P-45015β was induced, an effect that was dramatically potentiated by simultaneous treatment with thyroxine and cortisol. A synergistic effect of thyroxine and cortisol at a pretranslational level was demonstrated, although the major potentiating effect could be attributed to thyroxine. Thus it was concluded that GH, depending on its secretory pattern is the sole masculinizing factor for cytochrome P-450, and that it is also a feminizing factor, although this activity requires the synergistic action of thyroid hormones and glucocorticoids to reach its full effect.

Journal of Endocrinology (1989) 120, 311–317

Restricted access
H Valimaa
Search for other papers by H Valimaa in
Google Scholar
PubMed
Close
,
S Savolainen
Search for other papers by S Savolainen in
Google Scholar
PubMed
Close
,
T Soukka
Search for other papers by T Soukka in
Google Scholar
PubMed
Close
,
P Silvoniemi
Search for other papers by P Silvoniemi in
Google Scholar
PubMed
Close
,
S Makela
Search for other papers by S Makela in
Google Scholar
PubMed
Close
,
H Kujari
Search for other papers by H Kujari in
Google Scholar
PubMed
Close
,
JA Gustafsson
Search for other papers by JA Gustafsson in
Google Scholar
PubMed
Close
, and
M Laine
Search for other papers by M Laine in
Google Scholar
PubMed
Close

Many studies have shown that the oral mucosa and salivary glands are sensitive to estrogen action. However, the expression of estrogen receptors (ERs) within these tissues is an area of controversy. ERs exist as two subtypes (ERalpha and ERbeta), and we hypothesized that the incongruity between ER expression and estrogen sensitivity may result from differential expression of ER subtypes in oral tissues. To test this hypothesis, we analyzed oral mucosal and salivary gland samples for ERalpha and ERbeta protein expression by immunohistochemistry from a cross-section of patients attending hospital for surgical problems of the head and neck. ERalpha was not detected in oral buccal and gingival epithelium or in salivary glands. In contrast, ERbeta was widely expressed at high levels in all oral tissues studied. Within these tissues, ERbeta was observed primarily in keratinocytes and salivary gland acinar and ductal cells. Our results demonstrating the expression of only the ERbeta subtype within oral tissues may explain the contradictory results from previous studies investigating ER expression in these tissues. Importantly, these results suggest that estrogens may act via ERbeta in oral tissues and explain the effect of hormonal changes on the oral mucosa as well as on saliva secretion and composition.

Free access
MK Lindberg
Search for other papers by MK Lindberg in
Google Scholar
PubMed
Close
,
SL Alatalo
Search for other papers by SL Alatalo in
Google Scholar
PubMed
Close
,
JM Halleen
Search for other papers by JM Halleen in
Google Scholar
PubMed
Close
,
S Mohan
Search for other papers by S Mohan in
Google Scholar
PubMed
Close
,
JA Gustafsson
Search for other papers by JA Gustafsson in
Google Scholar
PubMed
Close
, and
C Ohlsson
Search for other papers by C Ohlsson in
Google Scholar
PubMed
Close

There are two known estrogen receptors, estrogen receptor-alpha (ER alpha) and estrogen receptor-beta (ER beta), which may mediate the actions of estrogen. The aim of the present study was to compare fat content, skeletal growth and adult bone metabolism in female mice lacking ER alpha (ERKO), ER beta (BERKO) or both ERs (DERKO). We demonstrate that endogenous estrogens decrease the fat content in female mice via ER alpha and not ER beta. Interestingly, the longitudinal bone growth was decreased in ERKO, increased in BERKO, but was intermediate in DERKO females, demonstrating that ER alpha and ER beta exert opposing effects in the regulation of longitudinal bone growth. The effects on longitudinal bone growth were correlated with similar effects on serum levels of IGF-I. A complex regulation of the trabecular bone mineral density (BMD), probably caused by a disturbed feedback regulation of estrogen and testosterone, was observed in female ER-inactivated mice. Nevertheless, a partial functional redundancy for ER alpha and ER beta in the maintenance of the trabecular BMD was observed in the female mice at 60 days of age. Thus, ER alpha and ER beta may have separate effects (regulation of fat), opposing effects (longitudinal bone growth) or partial redundant effects (trabecular BMD at 60 days of age), depending on which parameter is studied.

Free access