Search Results
You are looking at 1 - 4 of 4 items for
- Author: JJ Bass x
- Refine by access: All content x
Search for other papers by Napier JR in
Google Scholar
PubMed
Search for other papers by MF Thomas in
Google Scholar
PubMed
Search for other papers by M Sharma in
Google Scholar
PubMed
Search for other papers by SC Hodgkinson in
Google Scholar
PubMed
Search for other papers by JJ Bass in
Google Scholar
PubMed
Insulin-like growth factor-I (IGF-I) has been shown to stimulate myoblast proliferation for a limited time after which serum is required to reactivate IGF-I-stimulated myoblast proliferation. The aim of these studies was to determine whether IGF-I can stimulate myoblast proliferation and/or inhibit apoptosis alone or whether co-factors are necessary. This was achieved by investigating the proliferative response of L6 myoblasts to IGF-I and horse serum (HS) and by examining the status of cells in terms of cell number, substrate adherence, cell viability and DNA laddering following incubation with IGF-I and HS. L6 myoblasts proliferate in response to IGF-I after 36 h is not due to accumulation of waste products or lack of IGF-I. The addition of a low level (1% v/v) of HS restores the ability of myoblasts to proliferate in response to IGF-I and this supports the existence of a mitogenic competence factor. Furthermore, myoblasts failing to proliferate in response to IGF-I after 36 h regain the capacity to respond to IGF-I for a further period of 36 h when exposed to fetal bovine serum. Following the initial (36 h) phase of IGF-I-stimulated proliferation, removal of both IGF-I and HS led to a dramatic (60%) reduction in the number of cells fully attached to the culture vessel, with 60% of the completely detached cells dead. Agarose gel electrophoresis of extracts from these detached cells revealed higher levels of DNA laddering than extracts prepared from attached cells with IGF-I present. This suggests that IGF-I acts as a survival factor by protecting cells from apoptosis. In conclusion these experiments support the presence of a mitogenic competence factor in horse serum, which restores the ability of cells to proliferate in response to IGF-I. Unlike proliferation, protection against apoptosis is achieved by IGF-I or HS independently of each other.
Search for other papers by JM Oldham in
Google Scholar
PubMed
Search for other papers by JA Martyn in
Google Scholar
PubMed
Search for other papers by KM Hua in
Google Scholar
PubMed
Search for other papers by NA MacDonald in
Google Scholar
PubMed
Search for other papers by SC Hodgkinson in
Google Scholar
PubMed
Search for other papers by JJ Bass in
Google Scholar
PubMed
In post-natal animals, plasma concentrations of IGF-I are tightly regulated by nutritional status. The current study reports that plasma levels of IGF-II in sheep are also regulated by nutrition, but whether plasma IGF-II is increased, decreased or remains the same, depends on the age of the animal. Ewe lambs, ranging in age from 2 days to 2 years, were fed or fasted for lengths of time between 24 and 72 h. Blood samples were taken at intervals of 24 h throughout the treatment period and immediately before slaughter. Plasma concentrations of IGF-I increased with advancing age in fed animals (P<0.001) and were reduced by fasting in all age groups (P<0.001). Plasma concentrations of IGF-II also increased as animals matured (P<0.001), but did not show an overall effect of the fasting treatment. An interaction between age and nutrition (P<0.001) resulted from a decrease in plasma IGF-II in response to fasting in neonatal animals (P<0.01) and, conversely, increased levels of plasma IGF-II in fasted mature animals (P<0.01 or P<0.001). Fasted sheep of peripubertal age showed no change in plasma levels of IGF-II. The nutritional sensitivity of serum IGF-binding proteins (BPs) also changed with age. The 29 kDa BP, which we presume to be BP1, was elevated by fasting in young animals and reduced slightly in older animals. BP2 was increased to a similar magnitude by fasting at all ages. BP3 was depressed by fasting in young animals and showed little change in adults. In contrast, a 24 kDa BP, which is probably BP4, showed little change in young animals and was reduced substantially in older sheep. In conclusion, the response of plasma IGF-II to fasting suggests that this peptide has functions in mediating nutritional stress which depend on the age of the animal, and also that the role of IGF-II may differ from that of IGF-I in adults.
Search for other papers by KG Matthews in
Google Scholar
PubMed
Search for other papers by GP Devlin in
Google Scholar
PubMed
Search for other papers by JV Conaglen in
Google Scholar
PubMed
Search for other papers by SP Stuart in
Google Scholar
PubMed
Search for other papers by W Mervyn Aitken in
Google Scholar
PubMed
Search for other papers by JJ Bass in
Google Scholar
PubMed
We have studied changes in the IGF axis in an ovine model of myocardial infarction (MI), in order to determine the relationship between time-based changes in post-infarct myocardium and IGF levels. IGF localization was studied by immunocytochemistry, production by in situ hybridization, and specific binding by radioligand studies. In surviving tissue, IGF-I peptide localized to cardiomyocytes, with strongest immunostaining at 1 and 2 days post-infarct in the immediate border area adjoining the infarct, where IGF-I mRNA also increased, reaching a maximum at 2 days. Binding of radiolabelled IGF-I in surviving tissue was initially lower than that seen in cardiomyocytes in control myocardium, subsequently increasing to become significantly greater by 6 days post-infarct. In necrotic tissue, IGF-I peptide was still detectable in cardiomyocytes at 0.5 days post-infarct, but had cleared from this area by 1 day, becoming detectable again at 6 days post-infarct in macrophages and fibroblasts infiltrating the repair zone. IGF-I mRNA was not detected in necrotic tissue until 6 days, when probe hybridized to macrophages and fibroblasts. Within the necrotic zone, high levels of radiolabelled IGF-I binding to a combination of receptors and binding proteins were observed in cardiomyocytes in islands of viable tissue located close to the border. Weak immunostaining for IGF-II was observed in cardiomyocytes of the surviving tissue. IGF-II mRNA was not detected in either surviving or necrotic areas. Binding of radiolabelled IGF-II was predominantly to macrophages in both surviving and infarct areas, although as with IGF-I, high levels of binding of radiolabelled IGF-II to a combination of receptors and binding proteins were observed in islands of viable tissue close to the border within the necrotic area. We conclude that, following MI, surviving cardiomyocytes at the infarct border show marked changes in IGF-I localization, production, and specific binding, indicating that the IGF axis is directly involved in post-infarct events, possibly in the maintenance of cardiac function by the induction of hypertrophy and in cell survival by decreasing apoptotic cell death, which has been demonstrated in other cell types.
Search for other papers by F Jeanplong in
Google Scholar
PubMed
Search for other papers by JJ Bass in
Google Scholar
PubMed
Search for other papers by HK Smith in
Google Scholar
PubMed
Search for other papers by SP Kirk in
Google Scholar
PubMed
Search for other papers by R Kambadur in
Google Scholar
PubMed
Search for other papers by M Sharma in
Google Scholar
PubMed
Search for other papers by JM Oldham in
Google Scholar
PubMed
The IGF axis is nutritionally sensitive in vivo and IGFs stimulate myoblast proliferation and differentiation in vitro, while myostatin inhibits these processes in vitro. We hypothesised that underfeeding would reversibly inhibit the myogenic activity of satellite cells in vivo together with decreased IGF-I and increased myostatin in muscle. Satellite cell activity was measured indirectly from the expression of proliferating cell nuclear antigen (PCNA) and the myogenic regulatory factors (MRFs), MyoD, Myf-5 and myogenin. Young sheep were underfed (30% of maintenance) and some killed after 1, 4, 12, 17, 21 and 22 weeks. Remaining underfed animals were then re-fed a control ration of pellets and killed after 2 days, and 1, 6 and 30 weeks. Expression of PCNA and MRFs decreased during the first week of underfeeding. This coincided with reduced IGF-I and myostatin mRNA, and processed myostatin. Subsequently, Myf-5, MyoD, myostatin mRNA and processed myostatin increased, suggesting that satellite cells may have become progressively quiescent. Long-term underfeeding caused muscle necrosis in some animals and IGF-I and MRF expression was increased in these, indicating the activation of satellite cells for muscle repair. Re-feeding initiated rapid muscle growth and increased expression of PCNA, IGF-I and the MRFs concurrently with decreased myostatin proteins. In conclusion, these data indicate that IGF-I and myostatin may work in a coordinated manner to regulate the proliferation, differentiation and quiescence of satellite cells in vivo.