Search Results

You are looking at 1 - 2 of 2 items for

  • Author: JJ Hirst x
  • Refine by Access: All content x
Clear All Modify Search
Free access

PN Nguyen, I Ross Young, DW Walker, and JJ Hirst

Neuroactive steroids may be synthesised in the brain either de novo from cholesterol or from blood-borne precursors. Concentrations of a GABAA receptor agonist, allopregnanolone, in the fetal brain exceed those in the circulation, and are markedly higher than adult brain concentrations. We used fetal hypophysectomy or adrenalectomy to elucidate the contribution of hypothalamic-pituitary factors and adrenal steroid secretion to the overall neuroactive steroid level in both the fetal brain and the fetal circulation. Hypophysectomy or adrenalectomy was performed between 108 and 112 days of gestation (term approximately 147 days) and fetal tissues were collected at 140 days of gestation. Immunoreactive (ir) ACTH and cortisol in the plasma were significantly reduced after hypophysectomy, whereas adrenalectomy led to increased irACTH but significantly decreased cortisol concentrations, as expected. Brain concentrations of allopregnanolone, progesterone and pregnenolone did not change significantly in fetuses that underwent either hypophysectomy or adrenalectomy; however, concentrations in the plasma and content in the adrenal gland were decreased. Expression of cytochrome P450 scc and 5alpha-reductase type II (5alphaRII) in the brain, measured by western immunoblotting, did not change after either hypophysectomy or adrenalectomy but, after hypophysectomy, expression of P450 scc in the adrenal gland was significantly decreased and that of 5alphaRII remained unchanged. These findings suggest that the regulation of the neuroactive steroid content in the fetal brain is independent of adrenal steroidogenesis and hypothalamic-pituitary factors. Furthermore, the absence of a change in enzyme expression in the brain suggests that the control of the expression of these enzymes is independent of hypothalamic-pituitary factors. Thus local control mechanisms within the brain may be responsible for maintaining the high neurosteroid content present during fetal life, as these mechanisms are independent of adrenal steroid production.

Free access

HK Palliser, GT Ooi, JJ Hirst, G Rice, NL Dellios, RM Escalona, and IR Young

The differential production of prostaglandin (PG) F(2 alpha) and PGE(2) within the uterine compartment may play a role in controlling myometrial contraction. We hypothesized that the enzymes downstream of PG endoperoxide synthase-2 (PGHS-2) determine the ratio of PGF(2 alpha) and PGE(2) in the utero-ovarian vein plasma and the time of normal and preterm labour onset. The aim of this study was to simultaneously determine the expression of PGF and PGE synthases (PGFS and PGES) in gestational tissues at spontaneous and induced-preterm labour in sheep. Myometrial, endometrial and placental tissue were obtained from ewes in dexamethasone-induced preterm labour, age-matched control ewes, and ewes in spontaneous term labour for analysis of mRNA expression by real-time PCR. PGFS mRNA expression was significantly increased following dexamethasone-induced and spontaneous labour onset in placentome (P<0.01) but was unchanged in the myometrium and endometrium. In contrast, PGES mRNA expression remained unchanged or decreased. PGHS-2 mRNA expression was increased in all tissues examined in both dexamethasone-induced and spontaneous labour (P<0.001). Plasma PGE(2) and PGF(2 alpha) concentrations rose in both dexamethasone-induced and spontaneous labour with the ratio of PGF(2 alpha):PGE(2) increased with labour onset (P<0.05). These results are consistent with the hypothesis that the increased expression, of PGFS is responsible for the increased PGF(2 alpha):PGE(2) ratio and this, together with increased PGHS-2 expression, accounts for myometrial activity at labour onset. The findings point to PGFS expression as a key factor in regulating the uterotonic process in the sheep.