Search Results
You are looking at 1 - 3 of 3 items for
- Author: James E Bowe x
- Refine by access: All content x
Search for other papers by James E Bowe in
Google Scholar
PubMed
Search for other papers by Zara J Franklin in
Google Scholar
PubMed
Search for other papers by Astrid C Hauge-Evans in
Google Scholar
PubMed
Search for other papers by Aileen J King in
Google Scholar
PubMed
Search for other papers by Shanta J Persaud in
Google Scholar
PubMed
Search for other papers by Peter M Jones in
Google Scholar
PubMed
The pathophysiology of diabetes as a disease is characterised by an inability to maintain normal glucose homeostasis. In type 1 diabetes, this is due to autoimmune destruction of the pancreatic β-cells and subsequent lack of insulin production, and in type 2 diabetes it is due to a combination of both insulin resistance and an inability of the β-cells to compensate adequately with increased insulin release. Animal models, in particular genetically modified mice, are increasingly being used to elucidate the mechanisms underlying both type 1 and type 2 diabetes, and as such the ability to study glucose homeostasis in vivo has become an essential tool. Several techniques exist for measuring different aspects of glucose tolerance and each of these methods has distinct advantages and disadvantages. Thus the appropriate methodology may vary from study to study depending on the desired end-points, the animal model, and other practical considerations. This review outlines the most commonly used techniques for assessing glucose tolerance in rodents and details the factors that should be taken into account in their use. Representative scenarios illustrating some of the practical considerations of designing in vivo experiments for the measurement of glucose homeostasis are also discussed.
Search for other papers by Thomas G Hill in
Google Scholar
PubMed
Search for other papers by Lorna I F Smith in
Google Scholar
PubMed
Search for other papers by Inmaculada Ruz-Maldonado in
Google Scholar
PubMed
Search for other papers by Peter M Jones in
Google Scholar
PubMed
Search for other papers by James E Bowe in
Google Scholar
PubMed
During pregnancy the maternal pancreatic islets of Langerhans undergo adaptive changes to compensate for gestational insulin resistance. The lactogenic hormones are well established to play a key role in regulating the islet adaptation to pregnancy, and one of the mechanisms through which they act is through upregulating β-cell serotonin production. During pregnancy islet serotonin levels are significantly elevated, where it is released from the β-cells to drive the adaptive response through paracrine and autocrine effects. We have previously shown that placental kisspeptin (KP) also plays a role in promoting the elevated insulin secretion and β-cell proliferation observed during pregnancy, although the precise mechanisms involved are unclear. In the present study we investigated the effects of KP on expression of pro-proliferative genes and serotonin biosynthesis within rodent islets. Whilst KP had limited effect on pro-proliferative gene expression at the time points tested, KP did significantly stimulate expression of the serotonin biosynthesis enzyme Tph-1. Furthermore, the islets of pregnant β-cell-specific GPR54 knockdown mice were found to contain significantly fewer serotonin-positive β-cells when compared to pregnant controls. Our previous studies suggested that reduced placental kisspeptin production, with consequent impaired kisspeptin-dependent β-cell compensation, may be a factor in the development of GDM in humans. These current data suggest that, similar to the lactogenic hormones, KP may also contribute to serotonin biosynthesis and subsequent islet signalling during pregnancy. Furthermore, upregulation of serotonin biosynthesis may represent a common mechanism through which multiple signals might influence the islet adaptation to pregnancy.
Search for other papers by Sian J S Simpson in
Google Scholar
PubMed
Search for other papers by Lorna I F Smith in
Google Scholar
PubMed
Search for other papers by Peter M Jones in
Google Scholar
PubMed
Search for other papers by James E Bowe in
Google Scholar
PubMed
The corticotropin-releasing hormone (CRH) family of peptides, including urocortin (UCN) 1, 2 and 3, are established hypothalamic neuroendocrine peptides, regulating the physiological and behaviour responses to stress indirectly, via the hypothalamic-pituitary-adrenal (HPA) axis. More recently, these peptides have been implicated in diverse roles in peripheral organs through direct signalling, including in placental and pancreatic islet physiology. CRH has been shown to stimulate insulin release through activation of its cognate receptors, CRH receptor 1 (CRHR1) and 2. However, the physiological significance of this is unknown. We have previously reported that during mouse pregnancy, expression of CRH peptides increase in mouse placenta suggesting that these peptides may play a role in various biological functions associated with pregnancy, particularly the pancreatic islet adaptations that occur in the pregnant state to compensate for the physiological increase in maternal insulin resistance. In the current study, we show that mouse pregnancy is associated with increased circulating levels of UCN2 and that when we pharmacologically block endogenous CRHR signalling in pregnant mice, impairment of glucose tolerance is observed. This effect on glucose tolerance was comparable to that displayed with specific CRHR2 blockade and not with specific CRHR1 blockade. No effects on insulin sensitivity or the proliferative capacity of β-cells were detected. Thus, CRHR2 signalling appears to be involved in β-cell adaptive responses to pregnancy in the mouse, with endogenous placental UCN2 being the likely signal mediating this.