Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Jeremy W Tomlinson x
Clear All Modify Search
Free access

Marcus Quinkler, Binayak Sinha, Jeremy W Tomlinson, Iwona J Bujalska, Paul M Stewart and Wiebke Arlt

Women with polycystic ovary syndrome (PCOS) have high circulating androgens, thought to originate from ovaries and adrenals, and frequently suffer from the metabolic syndrome including obesity. However, serum androgens are positively associated with body mass index (BMI) not only in PCOS, but also in simple obesity, suggesting androgen synthesis within adipose tissue. Thus we investigated androgen generation in human adipose tissue, including expression of 17β-hydroxysteroid dehydrogenase (17β-HSD) isozymes, important regulators of sex steroid metabolism. Paired omental and subcutaneous fat biopsies were obtained from 27 healthy women undergoing elective abdominal surgery (age range 30–50 years; BMI 19.7–39.2 kg/m2). Enzymatic activity assays in preadipocyte proliferation cultures revealed effcient conversion of androstenedione to testosterone in both subcutaneous and omental fat. RT-PCR of whole fat and preadipocytes of subcutaneous and omental origin showed expression of 17β-HSD types 4 and 5, but no relevant expression of 17β-HSD types 1, 2, or 3. Microarray analysis confirmed this expression pattern (17β-HSD5>17β-HSD4) and suggested a higher expression of 17β-HSD5 in subcutaneous fat. Accordingly, quantitative real-time RT-PCR showed significantly higher expression of 17β-HSD5 in subcutaneous compared with omental fat (P<0.05). 17β-HSD5 expression in subcutaneous, but not omental, whole fat correlated significantly with BMI (r=0.51, P<0.05). In keeping with these findings, 17β-HSD5 expression in subcutaneous fat biopsies from six women taking part in a weight loss study decreased significantly with weight loss (P<0.05). A role for 17β-HSD5 in adipocyte differentiation was further supported by the observed increase in 17β-HSD5 expression upon differentiation of stromal preadipocytes to mature adipocytes (n=5; P<0.005), which again was higher in cells of subcutaneous origin. Functional activity of 17β-HSD5 also significantly increased with differentiation, revealing a net gain in androgen activation (androstenedione to testosterone) in subcutaneous cultures, contrasting with a net gain in androgen inactivation (testosterone to androstenedione) in omental cultures. Thus, human adipose tissue is capable of active androgen synthesis catalysed by 17β-HSD5, and increased expression in obesity may contribute to circulating androgen excess.

Free access

Iwona J Bujalska, Omar M Durrani, Joseph Abbott, Claire U Onyimba, Pamela Khosla, Areeb H Moosavi, Tristan T Q Reuser, Paul M Stewart, Jeremy W Tomlinson, Elizabeth A Walker and Saaeha Rauz

Glucocorticoids (GCs) have a profound effect on adipose biology increasing tissue mass causing central obesity. The pre-receptor regulation of GCs by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) that activates cortisol from cortisone has been postulated as a fundamental mechanism underlying the metabolic syndrome mediating adipocyte hyperplasia and hypertrophy in the omental (OM) depot. Orbital adipose tissue (OF) is the site of intense inflammation and tissue remodelling in several orbital inflammatory disease states. In this study, we describe features of the GC metabolic pathways in normal human OF depot and compare it with subcutaneous (SC) and OM depots. Using an automated histological characterisation technique, OF adipocytes were found to be significantly smaller (parameters: area, maximum diameter and perimeter) than OM and SC adipocytes (P<0.001). Although immunohistochemical analyses demonstrated resident CD68+ cells in all three whole tissue adipose depots, OF CD68 mRNA and protein expression exceeded that of OM and SC (mRNA, P<0.05; protein, P<0.001). In addition, there was higher expression of glucocorticoid receptor (GR)α mRNA in the OF whole tissue depot (P<0.05). Conversely, 11β-HSD1 mRNA together with the markers of late adipocyte differentiation (FABP4 and G3PDH) were significantly lower in OF. Primary cultures of OF preadipocytes demonstrated predominant 11β-HSD1 oxo-reductase activity with minimal dehydrogenase activity. Orbital adipocytes are smaller, less differentiated, and express low levels of 11β-HSD1 but abundant GRα compared with SC and OM. OF harbours a large CD68+ population. These characteristics define an orbital microenvironment that has the potential to respond to sight-threatening orbital inflammatory disease.

Open access

Nikolaos Nikolaou, Anastasia Arvaniti, Nathan Appanna, Anna Sharp, Beverly A Hughes, Dena Digweed, Martin J Whitaker, Richard Ross, Wiebke Arlt, Trevor M Penning, Karen Morris, Sherly George, Brian G Keevil, Leanne Hodson, Laura L Gathercole and Jeremy W Tomlinson

Steroid 5β-reductase (AKR1D1) is highly expressed in human liver where it inactivates endogenous glucocorticoids and catalyses an important step in bile acid synthesis. Endogenous and synthetic glucocorticoids are potent regulators of metabolic phenotype and play a crucial role in hepatic glucose metabolism. However, the potential of synthetic glucocorticoids to be metabolised by AKR1D1 as well as to regulate its expression and activity has not been investigated. The impact of glucocorticoids on AKR1D1 activity was assessed in human liver HepG2 and Huh7 cells; AKR1D1 expression was assessed by qPCR and Western blotting. Genetic manipulation of AKR1D1 expression was conducted in HepG2 and Huh7 cells and metabolic assessments were made using qPCR. Urinary steroid metabolite profiling in healthy volunteers was performed pre- and post-dexamethasone treatment, using gas chromatography-mass spectrometry. AKR1D1 metabolised endogenous cortisol, but cleared prednisolone and dexamethasone less efficiently. In vitro and in vivo, dexamethasone decreased AKR1D1 expression and activity, further limiting glucocorticoid clearance and augmenting action. Dexamethasone enhanced gluconeogenic and glycogen synthesis gene expression in liver cell models and these changes were mirrored by genetic knockdown of AKR1D1 expression. The effects of AKR1D1 knockdown were mediated through multiple nuclear hormone receptors, including the glucocorticoid, pregnane X and farnesoid X receptors. Glucocorticoids down-regulate AKR1D1 expression and activity and thereby reduce glucocorticoid clearance. In addition, AKR1D1 down-regulation alters the activation of multiple nuclear hormone receptors to drive changes in gluconeogenic and glycogen synthesis gene expression profiles, which may exacerbate the adverse impact of exogenous glucocorticoids.