Search Results

You are looking at 1 - 10 of 14 items for

  • Author: Jing Wang x
Clear All Modify Search
Free access

Kai Wang and Jing Zheng

During normal pregnancy, dramatically increased placental blood flow is critical for fetal growth and survival as well as neonatal birth weights and survivability. This increased blood flow results from angiogenesis, vasodilatation, and vascular remodeling. Locally produced growth factors including fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are key regulators of placental endothelial functions including cell proliferation, migration, and vasodilatation. However, the precise signaling mechanisms underlying such regulation in fetoplacental endothelium are less well defined, specifically with regard to the interactions amongst protein kinases (PKs), protein phosphatase, and nitric oxide (NO). Recently, we and other researchers have obtained solid evidence showing that different signaling mechanisms participate in FGF2- and VEGFA-regulated fetoplacental endothelial cell proliferation and migration as well as NO production. This review will briefly summarize currently available data on signaling mediating fetoplacental angiogenesis with a specific emphasis on PKs, ERK1/2, AKT1, and p38 MAPK and protein phosphatases, PPP2 and PPP3.

Free access

Jing Li, Pan-Pan Zhao, Ting Hao, Dan Wang, Yu Wang, Yang-Zi Zhu, Yu-Qing Wu and Cheng-Hua Zhou

Urotensin II (U-II), a cyclic peptide originally isolated from the caudal neurosecretory system of fishes, can produce proinflammatory effects through its specific G protein-coupled receptor, GPR14. Neuropathic pain, a devastating disease, is related to excessive inflammation in the spinal dorsal horn. However, the relationship between U-II and neuropathic pain has not been reported. This study was designed to investigate the effect of U-II antagonist on neuropathic pain and to understand the associated mechanisms. We reported that U-II and its receptor GPR14 were persistently upregulated and activated in the dorsal horn of L4–6 spinal cord segments after chronic constriction injury (CCI) in rats. Intrathecal injection of SB657510, a specific antagonist against U-II, reversed CCI-induced thermal hyperalgesia and mechanical allodynia. Furthermore, we found that SB657510 reduced the expression of phosphorylated c-Jun N-terminal kinase (p-JNK) and nuclear factor-κB (NF-κB) p65 as well as subsequent secretion of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). It was also showed that both the JNK inhibitor SP600125 and the NF-κB inhibitor PDTC significantly attenuated thermal hyperalgesia and mechanical allodynia in CCI rats. Our present research showed that U-II receptor antagonist alleviated neuropathic pain possibly through the suppression of the JNK/NF-κB pathway in CCI rats, which will contribute to the better understanding of function of U-II and pathogenesis of neuropathic pain.

Free access

Jing Xie, Wei-Qing Wang, Ting-Xi Liu, Min Deng and Guang Ning

Chromogranin A (CHGA), a protein participating in the biogenesis of dense core secretory granules in various neuroendocrine tissues, plays a critical role in the release of hormones/peptides and the pathogenesis of pheochromocytoma. However, little is known about the developmental origin of CHGA-expressing cells during embryogenesis. Here, we report the structural characterization and spatio-temporal expression pattern of zebrafish (Danio rerio) ortholog of mammalian CHGA. The earliest expression of chga transcripts was observed at 16 h post fertilization in the developing cranial ganglia as six distinct cellular masses arranged bilaterally as strings of beads in the dorsal root ganglia (DRG) precursors along the dorsal trunk. With development advancing, the chga transcripts were expressed abundantly in diencephalon, mesencephalon, and rhombencephalon as well as in the DRG. Interestingly, double in situ hybridization assay of chga with genes expressed in pronephros (Wilms' tumor suppressor 1, wt1), adrenal cortex (side-chain cleavage enzyme, scc), and sympathoadrenal neuron/chromaffin cell (dopamine-β-hydroxylase, dbh), respectively, showed that the chga-expressing cells are spatially separated from wt1-, scc-, and dbh-positive cell populations during early embryonic development. The pronephros region does not express chga even up to 7 days post fertilization, while chga positive-staining cells bind in the brain and DRG, indicating that chga may play an important role in nervous system development during the early embryonic stages.

Free access

Fengyue Wang, Jing Yang, Junfeng Sun, Yanli Dong, Hong Zhao, Hui Shi and Lu Fu

Testosterone can affect cardiovascular disease, but its effects on mitochondrial dynamics in the post-infarct myocardium remain unclear. To observe the effects of testosterone replacement, a rat model of castration-myocardial infarction (MI) was established by ligating the left anterior descending coronary artery 2 weeks after castration with or without testosterone treatment. Expression of mitochondrial fission and fusion proteins was detected by western blot and immunofluorescence 14 days after MI. Cardiac function, myocardial inflammatory infiltration and fibrosis, cardiomyocyte apoptosis, mitochondrial microstructure, and ATP levels were also assessed. Compared with MI rats, castrated rats showed aggravated mitochondrial and myocardial insults, including mitochondrial swelling and disordered arrangement; loss of cristae, reduced mitochondrial length; decreased ATP levels; cardiomyocyte apoptosis; and impaired cardiac function. Results of western blotting analyses indicated that castration downregulated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1A) and mitofusin 2, but upregulated dynamin-related protein 1. The results were also supported by results obtained using immunofluorescence. However, these detrimental effects were reversed by testosterone supplementation, which also elevated the upstream AMP-activated protein kinase (AMPK) activation of PGC1A. Thus, testosterone can protect mitochondria in the post-infarct myocardium, partly via the AMPK–PGC1A pathway, thereby decreasing mitochondrial dysfunction and cardiomyocyte apoptosis. The effects of testosterone were confirmed by the results of ELISA analyses.

Free access

Miao Hou, Chenlin Ji, Jing Wang, Yanhua Liu, Bin Sun, Mei Guo, Jonas Burén and Xiaonan Li

Early life nutrition is important in the regulation of metabolism in adulthood. We studied the effects of different fatty acid composition diets on adiposity measures, glucose tolerance, and peripheral glucocorticoid (GC) metabolism in overfed neonatal rats. Rat litters were adjusted to a litter size of three (small litters (SLs)) or ten (normal litters (NLs)) on postnatal day 3 to induce overfeeding or normal feeding respectively. After weaning, SL and NL rats were fed a ω6 polyunsaturated fatty acid (PUFA) diet (14% calories as fat, soybean oil) or high-saturated fatty acid (high-fat; 31% calories as fat, lard) diet until postnatal week 16 respectively. SL rats were also divided into the third group fed a ω3 PUFA diet (14% calories as fat, fish oil). A high-fat diet induced earlier and/or more pronounced weight gain, hyperphagia, glucose intolerance, and hyperlipidemia in SL rats compared with NL rats. In addition, a high-fat diet increased 11β-hsd1 (Hsd11b1) mRNA expression and activity in the retroperitoneal adipose tissue of both litter groups compared with standard chow counterparts, whereas high-fat feeding increased hepatic 11β-hsd1 mRNA expression and activity only in SL rats. SL and a high-fat diet exhibited significant interactions in both retroperitoneal adipose tissue and hepatic 11β-HSD1 activity. Dietary ω3 PUFA offered protection against glucose intolerance and elevated GC exposure in the retroperitoneal adipose tissue and liver of SL rats. Taken together, the results suggest that dietary fatty acid composition in the post-sucking period may interact with neonatal feeding and codetermine metabolic alterations in adulthood.

Free access

Xiaonan Yan, Xiaonan Dai, Jing Wang, Nannan Zhao, Yugui Cui and Jiayin Liu

Owing to the heterogeneity in the clinical symptoms of polycystic ovary syndrome (PCOS), the early pathophysiological mechanisms of PCOS remain unclear. Clinical, experimental, and genetic evidence supports an interaction between genetic susceptibility and the influence of maternal environment in the pathogenesis of PCOS. To determine whether prenatal androgen exposure induced PCOS-related metabolic derangements during pubertal development, we administrated 5α-dihydrotestosterone (DHT) in pregnant rats and observed their female offspring from postnatal 4 to 8 weeks. The prenatally androgenized (PNA) rats exhibited more numerous total follicles, cystic follicles, and atretic follicles than the controls. Fasting glucose, insulin, leptin levels, and homeostatic model assessment for insulin resistance were elevated in the PNA rats at the age of 5–8 weeks. Following intraperitoneal glucose tolerance tests, glucose and insulin levels did not differ between two groups; however, the PNA rats showed significantly higher 30- and 60-min glucose levels than the controls after insulin stimulation during 5–8 weeks. In addition, prenatal DHT treatment significantly decreased insulin-stimulated phosphorylation of AKT in the skeletal muscles of 6-week-old PNA rats. The abundance of IR substrate 1 (IRS1) and IRS2 was decreased in the skeletal muscles and liver after stimulation with insulin in the PNA group, whereas phosphorylation of insulin-signaling proteins was unaltered in the adipose tissue. These findings validate the contribution of prenatal androgen excess to metabolic derangements in pubertal female rats, and the impaired insulin signaling through IRS and AKT may result in the peripheral insulin resistance during pubertal development.

Free access

Elisabete A Forsberg, Ileana R Botusan, Jing Wang, Verena Peters, Ishrath Ansurudeen, Kerstin Brismar and Sergiu Bogdan Catrina

IGF binding protein 1 (IGFBP1) is a member of the binding proteins for the IGF with an important role in glucose homeostasis. Circulating IGFBP1 is derived essentially from the liver where it is mainly regulated negatively by insulin. Carnosine, a natural antioxidant, has been shown to improve metabolic control in different animal models of diabetes but its mechanisms of action are still not completely unraveled. We therefore investigate the effect of carnosine treatment on the IGFBP1 regulation in db/db mice. Db/db mice and heterozygous non-diabetic mice received for 4 weeks regular water or water supplemented with carnosine. Igfbp1 mRNA expression in the liver was evaluated using qPCR and the protein levels in plasma by western blot. Plasma IGF1 and insulin were analyzed using immunoassays. HepG2 cells were used to study the in vitro effect of carnosine on IGFBP1. The modulation of hypoxia inducible factor-1 alpha (HIF-1α) which is the central mediator of hypoxia-induction of IGFBP1 was analyzed using: WB, reporter gene assay and qPCR. Carnosine decreased the circulating IGFBP1 levels and the liver expression Igfbp1, through a complex mechanism acting both directly by suppressing the HIF-1α-mediated IGFBP1 induction and indirectly through increasing circulating insulin level followed by a decrease in the blood glucose levels and increased the plasma levels or IGF1. Reduction of IGFBP1 in diabetes through insulin-dependent and insulin-independent pathways is a novel mechanism by which carnosine contributes to the improvement of the metabolic control in diabetes.

Free access

Jiannan Zhang, Xin Li, Yawei Zhou, Lin Cui, Jing Li, Chenlei Wu, Yiping Wan, Juan Li and Yajun Wang

The interaction of melanocortin-4 (MC4R) and melanocortin-3 (MC3R) receptors with proopiomelanocortin (POMC)-derived peptides (e.g. α-MSH), agouti-related protein (AgRP) and melanocortin-2 receptor accessory protein 2 (MRAP2) is suggested to play critical roles in energy balance of vertebrates. However, evidence on their interaction in birds remains scarce. Our study aims to reveal their interaction in chickens and the results showed that (1) chicken (c-)MC3R and cMC4R expressed in Chinese hamster ovary (CHO) cells can be activated by α-MSH and ACTH1–39 equipotently, monitored by a pGL3-CRE-luciferase reporter system; (2) cMC3R and cMC4R, when co-expressed with cMRAP2 (or cMRAP, a cMRAP2 homolog), show increased sensitivity to ACTH treatment and thus likely act as ACTH-preferring receptors, and the interaction between cMC3R/cMC4R and cMRAP2 was demonstrated by co-immunoprecipitation assay; (3) both cMC3R and cMC4R display constitutive activity when expressed in CHO cells, as monitored by dual-luciferase reporter assay, and cMRAP2 (and cMRAP) can modulate their constitutive activity; (4) AgRP inhibits the constitutive activity of cMC3R/cMC4R, and it also antagonizes ACTH/α-MSH action on cMC4R/cMC3R, indicating that AgRP functions as the inverse agonist and antagonist for both receptors. These findings, together with the co-expression of cMC4R, cMC3R, cMRAP2, cAgRP and cPOMC in chicken hypothalamus detected by quantitative real-time PCR, suggest that within the hypothalamus, α-MSH/ACTH, AgRP and MRAP2 may interact at the MC4R(/MC3R) interface to control energy balance. Furthermore, our data provide novel proof for the involvement of MRAP2 (and MRAP) in fine-tuning the constitutive activity and ligand sensitivity and selectivity of both MC3R and MC4R in vertebrates.

Free access

Qinghua Wang, Jing Tang, Shujun Jiang, Zan Huang, Anying Song, Siyuan Hou, Xiang Gao and Hai-Bin Ruan

Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis and a target of the thiazolidinedione (TZD) class of antidiabetic drugs; therefore, identifying novel regulators of PPARγ action in adipocytes is essential for the future development of therapeutics for diabetes. MAGE family member D1 (MAGED1), by acting as an adaptor for ubiquitin-dependent degradation pathways and a co-factor for transcription, plays an important role in neural development, cell differentiation and circadian rhythm. Here, we showed that MAGED1 expression was downregulated during adipogenesis and loss of MAGED1 promoted preadipocyte proliferation and differentiation in vitro. MAGED1 bound to PPARγ and suppressed the stability and transcriptional activity of PPARγ. Compared to WT littermates, MAGED1-deficient mice showed increased levels of PPARγ protein and its target genes, more CD29+CD34+Sca-1+ adipocyte precursors and hyperplasia of white adipose tissues (WATs). Moreover, MAGED1-deficient mice developed late-onset obesity as a result of decreased energy expenditure and physical activity. However, these mice were metabolically healthy as shown by improved glucose clearance and insulin sensitivity, normal levels of serum lipids and enhanced secretion of adipokines such as leptin and adiponectin. Taken together, our data identify MAGED1 as a novel negative regulator of PPARγ activity, adipogenesis and insulin sensitivity in mice. MAGED1 might therefore serve as a novel pharmaceutical target to treat obesity-associated insulin resistance.

Free access

Xin-gang Yao, Xin Xu, Gai-hong Wang, Min Lei, Ling-ling Quan, Yan-hua Cheng, Ping Wan, Jin-pei Zhou, Jing Chen, Li-hong Hu and Xu Shen

Impaired glucose-stimulated insulin secretion (GSIS) and increasing β-cell death are two typical dysfunctions of pancreatic β-cells in individuals that are destined to develop type 2 diabetes, and improvement of β-cell function through GSIS enhancement and/or inhibition of β-cell death is a promising strategy for anti-diabetic therapy. In this study, we discovered that the small molecule, N-(2-benzoylphenyl)-5-bromo-2-thiophenecarboxamide (BBT), was effective in both potentiating GSIS and protecting β-cells from cytokine- or streptozotocin (STZ)-induced cell death. Results of further studies revealed that cAMP/PKA and long-lasting (L-type) voltage-dependent Ca2 + channel/CaMK2 pathways were involved in the action of BBT against GSIS, and that the cAMP/PKA pathway was essential for the protective action of BBT on β-cells. An assay using the model of type 2 diabetic mice induced by high-fat diet combined with STZ (STZ/HFD) demonstrated that BBT administration efficiently restored β-cell functions as indicated by the increased plasma insulin level and decrease in the β-cell loss induced by STZ/HFD. Moreover, the results indicated that BBT treatment decreased fasting blood glucose and HbA1c and improved oral glucose tolerance further highlighting the potential of BBT in anti-hyperglycemia research.