Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Joan Soler x
Clear All Modify Search
Free access

Elisabet Estil.les, Noèlia Téllez, Joan Soler and Eduard Montanya

Interleukin-1β (IL1B) is an important contributor to the autoimmune destruction of β-cells in type 1 diabetes, and it has been recently related to the development of type 2 diabetes. IGF2 stimulates β-cell proliferation and survival. We have determined the effect of IL1B on β-cell replication, and the potential modulation by IGF2 and glucose. Control-uninfected and adenovirus encoding for IGF2 (Ad-IGF2)-infected rat islets were cultured at 5.5 or 22.2 mmol/l glucose with or without 1, 10, 30, and 50 U/ml of IL1B. β-Cell replication was markedly reduced by 10 U/ml of IL1B and was almost nullified with 30 or 50 U/ml of IL1B. Higher concentrations of IL1B were required to increase β-cell apoptosis. Although IGF2 overexpression had a strong mitogenic effect on β-cells, IGF2 could preserve β-cell proliferation only in islets cultured with 10 U/ml IL1B, and had no effect with 30 and 50 U/ml of IL1B. In contrast, IGF2 overexpression induced a clear protection against IL1B-induced apoptosis, and higher concentrations of the cytokine were needed to increase β-cell apoptosis in Ad-IGF2-infected islets. These results indicate that β-cell replication is highly sensitive to the deleterious effects of the IL1B as shown by the inhibition of replication by relatively low IL1B concentrations, and the almost complete suppression of β-cell replication with high IL1B concentrations. Likewise, the inhibitory effects of IL-β on β-cell replication were not modified by glucose, and were only modestly prevented by IGF2 overexpression, in contrast with the higher protection against IL1B-induced apoptosis afforded by glucose and by IGF2 overexpression.

Free access

Marta Montolio, Montse Biarnés, Noèlia Téllez, Jessica Escoriza, Joan Soler and Eduard Montanya

Islets are particularly vulnerable in the initial days after transplantation when cell death results in the loss of more than half of the transplanted islet tissue. To determine whether a non-specific inflammation at the grafted site mediated by the local expression of inflammatory cytokines could play a role on the initial damage to transplanted islets, we studied the expressions of interleukin-1β (IL-1β) and inducible form of nitric oxide synthase (iNOS) after syngeneic islet transplantation. Insulin-treated streptozotocin-diabetic Lewis rats were syngeneically transplanted with 500 islets. Grafts were harvested 1, 3, or 7 days after transplantation, and the expressions of IL-1β and iNOS genes were determined by RT-PCR. IL-1β and iNOS mRNAs were detected in islets immediately after isolation, and were upregulated after transplantation. IL-1β mRNA was ninefold increased on day 1, was still sevenfold increased on day 3 after transplantation, and declined towards pretransplantation levels on day 7. iNOS mRNA showed a similar pattern of expression to that of IL-1β: on days 1 and 3 after transplantation it was 14-and 4-fold higher respectively than in freshly isolated islets. In addition, IL-1β and iNOS were identified in islet grafts and found to be produced mainly by CD68-positive macrophages. A low number of IL-1β- and iNOS-positive but CD68-negative cells were also identified suggesting that other cell types, in addition to macrophages, were involved in the expression of IL-1β and NO production in islet grafts. The finding of increased IL-1β and iNOS gene expressions in the initial days after islet transplantation and the presence of IL-β and iNOS proteins in the graft confirmed the presence of an early non-specific inflammatory response after islet transplantation. Overall, the data suggest that IL-1β plays a role in the extensive β-cell death found in the initial days after islet transplantation.