Search Results

You are looking at 1 - 4 of 4 items for

  • Author: Johannes Klein x
  • Refine by access: All content x
Clear All Modify Search
Mathias Fasshauer
Search for other papers by Mathias Fasshauer in
Google Scholar
PubMed
Close
,
Johannes Klein
Search for other papers by Johannes Klein in
Google Scholar
PubMed
Close
,
Susan Kralisch
Search for other papers by Susan Kralisch in
Google Scholar
PubMed
Close
,
Margit Klier
Search for other papers by Margit Klier in
Google Scholar
PubMed
Close
,
Ulrike Lossner
Search for other papers by Ulrike Lossner in
Google Scholar
PubMed
Close
,
Matthias Bluher
Search for other papers by Matthias Bluher in
Google Scholar
PubMed
Close
, and
Ralf Paschke
Search for other papers by Ralf Paschke in
Google Scholar
PubMed
Close

A chronic increase in systemic levels of acute-phase reactants contributes to the development of insulin resistance and associated disorders such as cardiovascular disease. Recently, serum amyloid A3 (SAA3) has been characterized as an adipocyte-secreted acute-phase reactant, expression of which is dramatically increased in insulin resistance and obesity. To further clarify expression and regulation of this adipocytokine in fat, SAA3 mRNA was measured by quantitative real-time reverse transcriptase PCR during differentiation of 3T3-L1 adipocytes and after treatment with various hormones known to induce insulin resistance and contribute to atherosclerosis. SAA3 mRNA was dramatically induced up to 77-fold during differentiation of 3T3-L1 preadipocytes. Furthermore, 100 nM dexamethasone and 30 ng/ml interleukin (IL)-6 induced SAA3 mRNA by up to 11- and 4.8-fold, respectively, in a time-dependent fashion with significant stimulation observed at concentrations as low as 10 nM dexamethasone and 1 ng/ml IL-6. In contrast, insulin, isoproterenol and growth hormone did not influence SAA3 synthesis. Inhibitor studies suggested that the positive effect of IL-6 on SAA3 expression is at least in part mediated by Janus kinase 2. Taken together, our results show a differential regulation of SAA3 by glucocorticoids and IL-6 supporting an integrative role of this acute-phase reactant in the pathogenesis of insulin resistance and its link to obesity and cardiovascular disease.

Free access
Susan Kralisch University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany
University of Lübeck, Department of Internal Medicine I, 23538 Lübeck, Germany

Search for other papers by Susan Kralisch in
Google Scholar
PubMed
Close
,
Johannes Klein University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany
University of Lübeck, Department of Internal Medicine I, 23538 Lübeck, Germany

Search for other papers by Johannes Klein in
Google Scholar
PubMed
Close
,
Ulrike Lossner University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany
University of Lübeck, Department of Internal Medicine I, 23538 Lübeck, Germany

Search for other papers by Ulrike Lossner in
Google Scholar
PubMed
Close
,
Matthias Bluher University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany
University of Lübeck, Department of Internal Medicine I, 23538 Lübeck, Germany

Search for other papers by Matthias Bluher in
Google Scholar
PubMed
Close
,
Ralf Paschke University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany
University of Lübeck, Department of Internal Medicine I, 23538 Lübeck, Germany

Search for other papers by Ralf Paschke in
Google Scholar
PubMed
Close
,
Michael Stumvoll University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany
University of Lübeck, Department of Internal Medicine I, 23538 Lübeck, Germany

Search for other papers by Michael Stumvoll in
Google Scholar
PubMed
Close
, and
Mathias Fasshauer University of Leipzig, Department of Internal Medicine III, 04103 Leipzig, Germany
University of Lübeck, Department of Internal Medicine I, 23538 Lübeck, Germany

Search for other papers by Mathias Fasshauer in
Google Scholar
PubMed
Close

Recently, visfatin was characterized as a novel adipo-cytokine that is upregulated in obesity and exerts insulin-mimetic effects in various tissues. To clarify expression and regulation of this adipocytokine, visfatin mRNA was measured by quantitative real-time reverse transcription-polymerase chain reaction in 3T3-L1 adipocytes during adipogenesis and after treatment with various hormones known to alter insulin sensitivity. Visfatin expression was about 6-fold higher in 3T3-L1 adipocytes in vitro as compared with epididymal fat in vivo and increased during adipogenic conversion more than 3-fold. Interestingly, 100 nM dexamethasone significantly increased visfatin mRNA by almost 1.5-fold. In contrast, 500 ng/ml growth hormone (GH), 10 ng/ml tumor necrosis factor (TNF) α, and 10 μM isoproterenol downregulated visfatin expression by 45%, 36%, and 43% respectively. Insulin did not influence synthesis of this adipocytokine. The effects of dexamethasone, GH, TNFα and isoproterenol were time- and dose-dependent. Furthermore, activation of Gs-protein-coupled pathways by forskolin and cholera toxin was sufficient to significantly downregulate visfatin mRNA. Taken together, our results show a differential regulation of visfatin mRNA by insulin resistance-inducing hormones, supporting the view that this adipo-cytokine might be an interesting novel candidate linking core components of the metabolic syndrome such as obesity and insulin resistance.

Free access
Johannes Klein
Search for other papers by Johannes Klein in
Google Scholar
PubMed
Close
,
Sören Westphal
Search for other papers by Sören Westphal in
Google Scholar
PubMed
Close
,
Daniel Kraus
Search for other papers by Daniel Kraus in
Google Scholar
PubMed
Close
,
Britta Meier
Search for other papers by Britta Meier in
Google Scholar
PubMed
Close
,
Nina Perwitz
Search for other papers by Nina Perwitz in
Google Scholar
PubMed
Close
,
Volker Ott
Search for other papers by Volker Ott in
Google Scholar
PubMed
Close
,
Mathias Fasshauer
Search for other papers by Mathias Fasshauer in
Google Scholar
PubMed
Close
, and
H Harald Klein
Search for other papers by H Harald Klein in
Google Scholar
PubMed
Close

Metformin is an anti-diabetic drug with anorexigenic properties. The precise cellular mechanisms of its action are not entirely understood. Adipose tissue has recently been recognized as an important endocrine organ that is pivotal for the regulation of insulin resistance and energy homeostasis. Due to its thermogenic capacity brown adipose tissue contributes to the regulation of energy metabolism and is an attractive target tissue for pharmacological approaches to treating insulin resistance and obesity. Leptin is the prototypic adipocyte-derived hormone inducing a negative energy balance. We investigated effects of metformin on adipocyte metabolism, signalling, and leptin secretion in a brown adipocyte model. Metformin acutely stimulated p44/p42 mitogen-activated protein (MAP) kinase in a dose- (3.2-fold at 1 mmol/l, P< 0.05) as well as time-dependent (3.8-fold at 5 min, P< 0.05) manner. This stimulation was highly selective since phosphorylation of intermediates in the stress kinase, janus kinase (JAK)–signal transducer and activator of transcription (STAT), and phosphatidylinositol (PI) 3-kinase signalling pathways such as p38 MAP kinase, STAT3, and Akt was unaltered. Furthermore, chronic metformin treatment for 12 days dose-dependently inhibited leptin secretion by 35% and 75% at 500 μmol/l and 1 mmol/l metformin respectively (P< 0.01). This reduction was not caused by alterations in adipocyte differentiation. Moreover, the impairment in leptin secretion by metformin was reversible within 48 h after removal of the drug. Pharmacological inhibition of p44/p42 MAP kinase prevented the metformin-induced negative effect on leptin secretion. Taken together, our data demonstrate direct acute effects of metformin on adipocyte signalling and endocrine function with robust inhibition of leptin secretion. They suggest a selective molecular mechanism that may contribute to the anorexigenic effect of this antidiabetic compound.

Free access
K Alexander H Iwen Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Search for other papers by K Alexander H Iwen in
Google Scholar
PubMed
Close
,
Oezge Senyaman Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Search for other papers by Oezge Senyaman in
Google Scholar
PubMed
Close
,
Arne Schwartz Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Search for other papers by Arne Schwartz in
Google Scholar
PubMed
Close
,
Maren Drenckhan Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Search for other papers by Maren Drenckhan in
Google Scholar
PubMed
Close
,
Britta Meier Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Search for other papers by Britta Meier in
Google Scholar
PubMed
Close
,
Dirk Hadaschik Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Search for other papers by Dirk Hadaschik in
Google Scholar
PubMed
Close
, and
Johannes Klein Department of Internal Medicine I, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany

Search for other papers by Johannes Klein in
Google Scholar
PubMed
Close

The melanocortin (MC) system is a pivotal component of the hypothalamo-pituitary–adrenal (HPA) stress axis and plays an important role in the pathogenesis of obesity and the metabolic syndrome. Adipose dysfunction is implicated in the pathogenesis of these disorders. We investigated direct ACTH effects on adipose functions in immortalised murine white and brown adipocytes. MC receptor types 2 and 5 were expressed at the mRNA and protein levels and were strongly up-regulated during differentiation. Chronic ACTH stimulation did not affect adipogenesis. Insulin-induced glucose uptake in white adipocytes was acutely and transiently reduced by 45% upon ACTH treatment. Visfatin and adiponectin gene expression was reduced by about 50% in response to ACTH, while interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) mRNA levels were acutely up-regulated by 2100 and 60% respectively. Moreover, IL-6 secretion was increased by 1450% within 4 h of ACTH treatment. In brown adipocytes, stimulation with ACTH caused a 690% increase in uncoupling protein (UCP)-1 mRNA levels within 8 h, followed by a 470% increase in UCP-1 protein concentrations after 24 h. Consistently, p38 mitogen-activated protein kinase (MAPK) phosphorylation was acutely increased by 1800% in response to ACTH stimulation, and selective inhibition of p38 MAPK abolished the ACTH-mediated UCP-1 protein increase. Taken together, ACTH acutely promotes an insulin-resistant, pro-inflammatory state and transiently enhances energy combustion. In conditions characterised by a dysregulation of the HPA stress axis such as the metabolic syndrome, direct MC interaction with adipocytes may contribute to dysregulated energy balance, insulin resistance and cardiometabolic complications.

Free access