Search Results

You are looking at 1 - 5 of 5 items for

  • Author: John J Kopchick x
Clear All Modify Search
Full access

David J Flint, Nadine Binart, Stephanie Boumard, John J Kopchick and Paul Kelly

Direct metabolic effects of GH on adipose tissue are well established, but effects of prolactin (PRL) have been more controversial. Recent studies have demonstrated PRL receptors on adipocytes and effects of PRL on adipose tissue in vitro. The role of GH in adipocyte proliferation and differentiation is also controversial, since GH stimulates adipocyte differentiation in cell lines, whereas it stimulates proliferation but inhibits differentiation of adipocytes in primary cell culture. Using female gene disrupted (ko) mice, we showed that absence of PRL receptors (PRLRko) impaired development of both internal and s.c. adipose tissue, due to reduced numbers of adipocytes, an effect differing from that of reduced food intake, where cell volume is decreased. In contrast, GHRko mice exhibited major decreases in the number of internal adipocytes, whereas s.c. adipocyte numbers were increased, even though body weight was decreased by 40–50%. The changes in adipose tissue in PRLRko mice appeared to be entirely due to extrinsic factors since preadipocytes proliferated and differentiated in similar fashion to wild-type animals in vitro and their response to insulin and isoproterenol was similar to wild-type animals. This contrasted with GHRko mice, where s.c. adipocytes proliferated, differentiated, and responded to hormones in identical fashion to controls, whereas parametrial adipocytes exhibited markedly depressed proliferation and differentiation potential and failed to respond to insulin or noradrenaline. Our results provide in vivo evidence that both GH and PRL stimulate differentiation of adipocytes but that the effects of GH are site specific and induce intrinsic changes in the precursor population, which are retained in vitro.

Full access

Caroline Manhès, Christine Kayser, Philippe Bertheau, Bruce Kelder, John J Kopchick, Paul A Kelly, Philippe Touraine and Vincent Goffin

Experimental, clinical, and epidemiological data support the growth-promoting role of endocrine prolactin (PRL) in mammary tumors. PRL is also produced by the breast, where it is now recognized to act as a growth/survival factor via autocrine/paracrine mechanisms. Recent transgenic (Tg) mouse models have revealed the pro-oncogenic effect of PRL over-expression in virgin mammary glands. To address the question whether PRL tumorigenicity was maintained on differentiated mammary glands, we generated mammary-specific Tg mice expressing human (h)PRL under the control of the milk whey acidic protein promoter, which directs autocrine hPRL over-expression in late gestation throughout lactation. Minimal levels of transgene expression were detected in the mammary glands of virgin animals, which at best induced partial ductal branching and lobulo-alveolar structures in older nulliparous females. As expected, expression of mammary hPRL dramatically increased at the end of first pregnancy, and from this point it never returned to baseline, although it peaked at each gestation/lactation cycle. Over-expression of hPRL that starts when the gland is already well into the differentiation process led to various morphological mammary alterations, including abnormally differentiated epithelium, atropy of the myoepithelial layer, dilated ducts, cysts, and lymphocytic infiltrates. These phenotypes tended to worsen with successive pregnancies, also reflecting cumulative damage of failure of involution. Although some older, multiparous females developed benign tumors (papillomas and metaplasias), none of the animals studied developed mammary carcinomas. In addition, we noticed that half of the Tg females exhibited lactation defects, leading to significantly increased pup mortality. This phenotype was due neither to failure of milk production nor to modification of its protein content, but rather it was correlated to lipid enrichment of the milk, which, in combination with profoundly altered morphology of the gland, led to impaired milk extrusion through the nipple. In summary, these data show that over-expression of autocrine hPRL in a differentiating mammary gland induces dramatic functional and morphological defects, but not carcinoma. This deserves further investigations on the emerging concept that autocrine PRL may have different effects on pathological development of the mammary gland depending on the differentiation state of the latter.

Full access

Nicoleta C Olarescu, Darlene E Berryman, Lara A Householder, Ellen R Lubbers, Edward O List, Fabian Benencia, John J Kopchick and Jens Bollerslev

GH influences adipocyte differentiation, but both stimulatory and inhibitory effects have been described. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are multipotent and are able to differentiate into adipocytes, among other cells. Canonical Wnt/β-catenin signaling activation impairs adipogenesis. The aim of the present study was to elucidate the role of GH on AT-MSC adipogenesis using cells isolated from male GH receptor knockout (GHRKO), bovine GH transgenic (bGH) mice, and wild-type littermate control (WT) mice. AT-MSCs from subcutaneous (sc), epididiymal (epi), and mesenteric (mes) AT depots were identified and isolated by flow cytometry (Pdgfrα + Sca1 + Cd45 Ter119 cells). Their in vitro adipogenic differentiation capacity was determined by cell morphology and real-time RT-PCR. Using identical in vitro conditions, adipogenic differentiation of AT-MSCs was only achieved in the sc depot, and not in epi and mes depots. Notably, we observed an increased differentiation in cells isolated from sc-GHRKO and an impaired differentiation of sc-bGH cells as compared to sc-WT cells. Axin2, a marker of Wnt/β-catenin activation, was increased in mature sc-bGH adipocytes, which suggests that activation of this pathway may be responsible for the decreased adipogenesis. Thus, the present study demonstrates that i) adipose tissue in mice has a well-defined population of Pdgfrα + Sca1 + MSCs; ii) the differentiation capacity of AT-MSCs varies from depot to depot regardless of GH genotype; iii) the lack of GH action increases adipogenesis in the sc depot; and iv) activation of the Wnt/β-catenin pathway might mediate the GH effect on AT-MSCs. Taken together, the present results suggest that GH diminishes fat mass in part by altering adipogenesis of MSCs.

Full access

Ellen R Lubbers, Edward O List, Adam Jara, Lucila Sackman-Sala, Jose Cordoba-Chacon, Manuel D Gahete, Rhonda D Kineman, Ravneet Boparai, Andrzej Bartke, John J Kopchick and Darlene E Berryman

Adiponectin is positively correlated with longevity and negatively correlated with many obesity-related diseases. While there are several circulating forms of adiponectin, the high-molecular-weight (HMW) version has been suggested to have the predominant bioactivity. Adiponectin gene expression and cognate serum protein levels are of particular interest in mice with altered GH signaling as these mice exhibit extremes in obesity that are positively associated with insulin sensitivity and lifespan as opposed to the typical negative association of these factors. While a few studies have reported total adiponectin levels in young adult mice with altered GH signaling, much remains unresolved, including changes in adiponectin levels with advancing age, proportion of total adiponectin in the HMW form, adipose depot of origin, and differential effects of GH vs IGF1. Therefore, the purpose of this study was to address these issues using assorted mouse lines with altered GH signaling. Our results show that adiponectin is generally negatively associated with GH activity, regardless of age. Further, the amount of HMW adiponectin is consistently linked with the level of total adiponectin and not necessarily with previously reported lifespan or insulin sensitivity of these mice. Interestingly, circulating adiponectin levels correlated strongly with inguinal fat mass, implying that the effects of GH on adiponectin are depot specific. Interestingly, rbGH, but not IGF1, decreased circulating total and HMW adiponectin levels. Taken together, these results fill important gaps in the literature related to GH and adiponectin and question the frequently reported associations of total and HMW adiponectin with insulin sensitivity and longevity.

Full access

Rita Sharma, Quyen Luong, Vishva M Sharma, Mitchell Harberson, Brian Harper, Andrew Colborn, Darlene E Berryman, Niels Jessen, Jens Otto Lunde Jørgensen, John J Kopchick, Vishwajeet Puri and Kevin Y Lee

Growth hormone (GH) has long been known to stimulate lipolysis and insulin resistance; however, the molecular mechanisms underlying these effects are unknown. In the present study, we demonstrate that GH acutely induces lipolysis in cultured adipocytes. This effect is secondary to the reduced expression of a negative regulator of lipolysis, fat-specific protein 27 (FSP27; aka Cidec) at both the mRNA and protein levels. These effects are mimicked in vivo as transgenic overexpression of GH leads to a reduction of FSP27 expression. Mechanistically, we show GH modulation of FSP27 expression is mediated through activation of both MEK/ERK- and STAT5-dependent intracellular signaling. These two molecular pathways interact to differentially manipulate peroxisome proliferator-activated receptor gamma activity (PPARγ) on the FSP27 promoter. Furthermore, overexpression of FSP27 is sufficient to fully suppress GH-induced lipolysis and insulin resistance in cultured adipocytes. Taken together, these data decipher a molecular mechanism by which GH acutely regulates lipolysis and insulin resistance in adipocytes.