Search Results

You are looking at 1 - 5 of 5 items for

  • Author: Jose R Romero x
  • Refine by Access: All content x
Clear All Modify Search
Free access

Cherish Chong, Anis Hamid, Tham Yao, Amanda E Garza, Luminita H Pojoga, Gail K Adler, Jose R Romero, and Gordon H Williams

We posit the existence of a paracrine/autocrine negative feedback loop, mediated by the mineralocorticoid receptor (MR), regulating aldosterone secretion. To assess this hypothesis, we asked whether altering MR activity in zona glomerulosa (ZG) cells affects aldosterone production. To this end, we studied ex vivo ZG cells isolated from male Wistar rats fed chow containing either high (1.6% Na+ (HS)) or low (0.03% Na+ (LS)) amount of sodium. Western blot analyses demonstrated that MR was present in both the ZG and zona fasciculata/zona reticularis (ZF/ZR/ZR). In ZG cells isolated from rats on LS chow, MR activation by fludrocortisone produced a 20% and 60% reduction in aldosterone secretion basally and in response to angiotensin II (ANGII) stimulation, respectively. Corticosterone secretion was increased in these cells suggesting that aldosterone synthase activity was being reduced by fludrocortisone. In contrast, canrenoic acid, an MR antagonist, enhanced aldosterone production by up to 30% both basally and in response to ANGII. Similar responses were observed in ZG cells from rats fed HS. Modulating glucocorticoid receptor (GR) activity did not alter aldosterone production by ZG cells; however, altering GR activity did modify corticosterone production from ZF/ZR/ZR cells both basally and in response to adrenocorticotropic hormone (ACTH). Additionally, activating the MR in ZF/ZR/ZR cells strikingly reduced corticosterone secretion. In summary, these data support the hypothesis that negative ultra-short feedback loops regulate adrenal steroidogenesis. In the ZG, aldosterone secretion is regulated by the MR, but not the GR, an effect that appears to be secondary to a change in aldosterone synthase activity.

Restricted access

Yi Jun Desmond Tan, Danielle L Brooks, Kelly Yin Han Wong, Yuefei Huang, Jose R Romero, Jonathan S. Williams, and Luminita H. Pojoga

Biologic sex influences the development of cardiovascular disease and modifies aldosterone (ALDO) and blood pressure (BP) phenotypes: females secrete more ALDO, and their adrenal glomerulosa cell is more sensitive to stimulation. Lysine-specific demethylase 1 (LSD1) variants in Africans and LSD1 deficiency in mice associate with BP and/or ALDO phenotypes. This study, in 18- and 40-week-old wild type (WT) and LSD1+/- mice, was designed to determine whether: 1) sex modifies ALDO biosynthetic enzymes; 2) LSD1 deficiency disrupts the effect of sex on these enzymes; 3) within each genotype, there is a positive relationship between ALDO biosynthesis (proximate phenotype), plasma ALDO (intermediate phenotype) and BP levels (distant phenotype); and 4) sex and LSD1 genotype interact on these phenotypes. In WT mice, female sex increases the expression of early enzymes in ALDO biosynthesis, but not ALDO levels or SBP. However, enzyme expressions are shifted downward in LSD1+/- females vs. males, so that early enzyme levels are similar but the late enzymes are substantially lower. In both age groups, LSD1 deficiency modifies the adrenal enzyme expressions, circulating ALDO levels and SBP in a sex specific manner. Finally, significant sex/LSD1 genotype interactions modulate the three phenotypes in mice. In conclusion, biologic sex in mice interacts with LSD1 deficiency to modify several phenotypes: 1) proximal (ALDO biosynthetic enzymes); 2) intermediate (circulating ALDO); and 3) distant (SBP). These results provide entrée to better understand the roles of biologic sex and LSD1 in: 1) hypertension heterogeneity and 2) in providing more personalized treatment.

Restricted access

Shadi K Gholami, Chee Sin Tay, Jessica M Lee, Eleanor Zagoren, Stephen A Maris, Jian Yao Wong, Amanda E Garza, Ezgi Caliskan Guzelce, Luminita H Pojoga, Gail K Adler, Jose R Romero, and Gordon H Williams

Inconsistencies have been reported on the effect of sex on aldosterone (ALDO) levels leading to clinical confusion. The reasons for these inconsistencies are uncertain but include estrogen and/or its receptor modulating target gene responses to mineralocorticoid receptor activation and ALDO secretagogues’ levels. This study’s goal was to determine whether ALDO’s biosynthesis also differed by sex. Two approaches were used. First, plasma renin activity and aldosterone were measured in rats. Both were significantly higher in males. Secondly, using rat zona glomerulosa (ZG) cells, we assessed three ex vivo areas: (1) activity/levels of early steps in ALDO’s biosynthesis (StAR and CYP11A1); (2) activity/levels of a late step (CYP11B2); and (3) the status of the mineralocorticoid receptor (MR)-mediated, ultrashort feedback loop. Females had higher expression of CYP11A1 and StAR and increased CYP11A1 activity (increased pregnenolone/corticosterone levels) but did not differ in CYP11B2 expression or activity (ALDO levels). Activating the ZG’s MR (thereby activating the ultrashort feedback loop) reduced CYP11B2’s activity similarly in both sexes. Exvivo, these molecular effects were accompanied, in females, by lower ALDO basally but higher ALDO with angiotensin II stimulation. In conclusion, we documented that not only was there a sex-mediated difference in the activity of ALDO’s biosynthesis but also these differences at the molecular level help explain the variable reports on ALDO’s circulating levels. Basally, both in vivo and ex vivo, males had higher ALDO levels, likely secondary to higher ALDO secretagogue levels. However, in response to acute stimulation, ALDO levels are higher in females because of the greater levels and/or activity of their StAR/CYP11A1.

Open access

Amanda E Garza, Elijah Trefts, Isis A Katayama Rangel, Danielle Brooks, Rene Baudrand, Burhanuddin Moize, Jose R Romero, Sanjay Ranjit, Thitinan Treesaranuwattana, Tham M Yao, Gail K Adler, Luminita H Pojoga, and Gordon H Williams

Aldosterone modulates the activity of both epithelial (specifically renal) and non-epithelial cells. Binding to the mineralocorticoid receptor (MR), activates two pathways: the classical genomic and the rapidly activated non-genomic that is substantially modulated by the level of striatin. We hypothesized that disruption of MR’s non-genomic pathway would alter aldosterone-induced cardiovascular/renal damage. To test this hypothesis, wild type (WT) and striatin heterozygous knockout (Strn+/ ) littermate male mice were fed a liberal sodium (1.6% Na+) diet and randomized to either protocol one: 3 weeks of treatment with either vehicle or aldosterone plus/minus MR antagonists, eplerenone or esaxerenone or protocol two: 2 weeks of treatment with either vehicle or L-NAME/AngII plus/minus MR antagonists, spironolactone or esaxerenone. Compared to the WT mice, basally, the Strn+/ mice had greater (~26%) estimated renal glomeruli volume and reduced non-genomic second messenger signaling (pAkt/Akt ratio) in kidney tissue. In response to active treatment, the striatin-associated-cardiovascular/renal damage was limited to volume effects induced by aldosterone infusion: significantly increased blood pressure (BP) and albuminuria. In contrast, with aldosterone or L-NAME/AngII treatment, striatin deficiency did not modify aldosterone-mediated damage: in the heart and kidney, macrophage infiltration, and increases in aldosterone-induced biomarkers of injury. All changes were near-normalized following MR blockade with spironolactone or esaxerenone, except increased BP in the L-NAME/AngII model. In conclusion, the loss of striatin amplified aldosterone-induced damage suggesting that aldosterone’s non-genomic pathway is protective but only related to effects likely mediated via epithelial, but not non-epithelial cells.

Free access

Yuefei Huang, Pei Yee Ting, Tham M Yao, Tsuyoshi Homma, Danielle Brooks, Isis Katayama Rangel, Gail K Adler, Jose R Romero, Jonathan S Williams, Luminita H Pojoga, and Gordon H Williams

Human risk allele carriers of lysine-specific demethylase 1 (LSD1) and LSD1-deficient mice have salt-sensitive hypertension for unclear reasons. We hypothesized that LSD1 deficiency causes dysregulation of aldosterone’s response to salt intake resulting in increased cardiovascular risk factors (blood pressure and microalbumin). Furthermore, we determined the effect of biological sex on these potential abnormalities. To test our hypotheses, LSD1 male and female heterozygote-knockout (LSD1+/−) and WT mice were assigned to two age groups: 18 weeks and 36 weeks. Plasma aldosterone levels and aldosterone production from zona glomerulosa cells studied ex vivo were greater in both male and female LSD1+/− mice consuming a liberal salt diet as compared to WT mice consuming the same diet. However, salt-sensitive blood pressure elevation and increased microalbuminuria were only observed in male LSD1+/− mice. These data suggest that LSD1 interacts with aldosterone’s secretory response to salt intake. Lack of LSD1 causes inappropriate aldosterone production on a liberal salt diet; males appear to be more sensitive to this aldosterone increase as males, but not females, develop salt sensitivity of blood pressure and increased microalbuminuria. The mechanism responsible for the cardiovascular protective effect in females is uncertain but may be related to estrogen modulating the effect of mineralocorticoid receptor activation.