Search Results

You are looking at 1 - 3 of 3 items for

  • Author: Joseph L Messina x
Clear All Modify Search
Free access

Lidong Zhai and Joseph L Messina

Injuries, hemorrhage, sepsis, burn, and critical illnesses all induce insulin resistance, and insulin resistance is strongly associated with advancing age. However, the effect of age on injury induced insulin resistance is not well studied. We performed surgical trauma in male rats of three different ages (3-, 6-, and 10-weeks old). Rats were either hemorrhaged to a mean arterial pressure of 35–40 mmHg and subsequently maintained at that pressure for up to 90 min, or maintained without hemorrhage as controls. Results indicate that insulin-induced intracellular signaling was diminished in liver and skeletal muscle of 6- and 10-week old rats following trauma and hemorrhage. In even younger rats, immediately post-weaning (∼3 weeks of age), insulin signaling was lost in liver, but not in skeletal muscle. Glucocorticoids can play a role in the chronic development of insulin resistance. Our results demonstrate that corticosterone levels were increased in 6- and 10-week old animals following hemorrhage, but little change was measured in 3-week old animals. Blockade of glucocorticoid synthesis prevented the development of insulin resistance in skeletal muscle, but not in liver of 6- and 10-week old rats. Moreover, skeletal muscle glucocorticoid receptor levels increased dramatically between 3 and 6 weeks of age. These results indicate that trauma and hemorrhage-induced hepatic insulin resistance occurs at all ages tested. However, there is no development of insulin resistance following trauma and hemorrhage in skeletal muscle of post-weaning rats. In skeletal muscle of 6- and 10-week old rats, inhibition of glucocorticoid levels prevents the development of insulin resistance.

Free access

Li Li, Xiaohua Li, Wenjun Zhou and Joseph L Messina

In recent years, the roles of chronic stress and depression as independent risk factors for decreased insulin sensitivity and the development of diabetes have been increasingly recognized. However, an understanding of the mechanisms linking insulin resistance and acute psychological stress are very limited. We hypothesized that acute psychological stress may cause the development of insulin resistance, which may be a risk factor in developing type 2 diabetes. We tested the hypothesis in a well-established mouse model using 180 episodes of inescapable foot shock (IES) followed by a behavioral escape test. In this study, mice that received IES treatment were tested for acute insulin resistance by measuring glucose metabolism and insulin signaling. When compared with normal and sham mice, mice that were exposed to IES resulting in escape failure (defined as IES with behavioral escape failure) displayed elevated blood glucose levels in both glucose tolerance and insulin tolerance tests. Furthermore, mice with IES exposure and behavioral escape failure exhibited impaired hepatic insulin signaling via the insulin-induced insulin receptor/insulin receptor substrate 1/Akt pathway, without affecting similar pathways in skeletal muscle, adipose tissue, and brain. Additionally, a rise in the murine growth-related oncogene KC/GRO was associated with impaired glucose metabolism in IES mice, suggesting a mechanism by which psychological stress by IES may influence glucose metabolism. The present results indicate that psychological stress induced by IES can acutely alter hepatic responsiveness to insulin and affect whole-body glucose metabolism.

Free access

Jie Xu, Shaonin Ji, Derwei Y Venable, John L Franklin and Joseph L Messina

Growth hormone (GH) and insulin are important regulators of cellular and whole body metabolism as well as somatic growth and body composition. Studies have indicated complex feedback effects of GH on insulin action and of insulin on GH signaling pathways. Previous studies in our laboratory have shown that GH induction of signal transducers and activators of transcription (STAT)5B tyrosine phosphorylation is inhibited by prolonged insulin treatment, probably via downregulation of GHR. Here, we find that in rat H4IIE hepatoma cells GH-induced tyrosine phosphorylation of two other STATs (STAT3 and STAT1) was also greatly reduced following prolonged insulin pretreatment compared with that induced by GH alone. In the present work, total STAT5B and STAT1 protein levels were not altered by prolonged insulin treatment. However, prolonged insulin treatment (16 h; 10 or 100 nM) resulted in a 30–40% reduction of total STAT3 protein, with little change at 0.1 and 1.0 nM insulin. Thus, there is a selective reduction of total STAT3 protein levels by insulin, but only at high concentration of insulin. Basal tyrosine phosphorylated (PY)-STAT3 was also significantly reduced by prolonged insulin treatment, and to a greater extent than total STAT3 protein levels. The inhibitory effect of insulin on total STAT3 protein and basal PY-STAT3 levels was dependent on activation of the MEK-ERK pathway, rather than the PI3K pathway. In contrast, the MEK-ERK pathway did not play a major role in insulin’s inhibition of GH-induced PY-STAT3 and PY-STAT1. The present studies indicate that prolonged hyperinsulinemia, such as that found in some obese patients or patients with Type 2 diabetes mellitus, may have profound effects on GH signaling via STAT3 and STAT1.