Search Results

You are looking at 1 - 2 of 2 items for

  • Author: Julian C Lui x
Clear All Modify Search
Free access

Julian C Lui

The resting zone houses a group of slowly proliferating ‘reserve’ chondrocytes and has long been speculated to serve as the stem cell niche of the postnatal growth plate. But are these resting chondrocytes bona fide stem cells? Recent technological advances in lineage tracing and next-generation sequencing have finally allowed researchers to answer this question. Several recent studies have also shed light into the signaling pathways and molecular mechanisms involved in the maintenance of resting chondrocytes, thus providing us with important new insights into the role of the resting zone in the paracrine and endocrine regulation of childhood bone growth.

Free access

Patricia Forcinito, Anenisia C Andrade, Gabriela P Finkielstain, Jeffrey Baron, Ola Nilsson and Julian C Lui

The mammalian growth plate undergoes programed senescence during juvenile life, causing skeletal growth to slow with age. We previously found that hypothyroidism in rats slowed both growth plate chondrocyte proliferation and growth plate senescence, suggesting that senescence is not dependent on age per se but rather on chondrocyte proliferation. However, one alternative explanation is that the observed slowing of growth plate senescence is a specific consequence of hypothyroidism. We reasoned that, if delayed senescence is a general consequence of growth inhibition, rather than a specific result of hypothyroidism, then senescence would also be slowed by other growth-inhibiting conditions. In this study, we therefore used tryptophan deficiency to temporarily inhibit growth in newborn rats for 4 weeks. We then allowed the animals to recover and studied the effects on growth plate senescence. We found that structural, functional, and molecular markers of growth plate senescence were delayed by prior tryptophan deficiency, indicating that the developmental program of senescence had occurred more slowly during the period of growth inhibition. Taken together with previous studies in hypothyroid rats, our findings support the hypothesis that delayed senescence is a general consequence of growth inhibition and hence that growth plate senescence is not simply a function of time per se but rather depends on growth.