Search Results

You are looking at 1 - 7 of 7 items for

  • Author: K Andersson x
  • Refine by Access: All content x
Clear All Modify Search
Free access

N Andersson, MK Lindberg, C Ohlsson, K Andersson, and B Ryberg

The recent development of different genetically modified mice with potentially interesting bone phenotypes has increased the demand for effective non-invasive methods to evaluate effects on bone of mice during growth and development, and for drug evaluation. In the present study, the skeleton was analyzed by repeated in vivo scans using dual energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT). Ovariectomized (ovx) mice treated with parathyroid hormone (PTH) were used as an animal model to evaluate these two techniques at different times after the onset of treatment. Female mice (6 weeks of age) were allocated randomly to four groups: (1) sham-operated+vehicle; (2) ovx+vehicle; (3) sham-operated+PTH(1-84) 150 microg/kg per day; (4) ovx+PTH. Six weeks after ovariectomy the drug treatment began and was continued for 8 weeks. The total body bone mineral content (BMC) and total body areal bone mineral density (BMD) were measured by DXA. Ovariectomy reduced total body BMC and total body areal BMD by 6.2+/-1.7% and 2.6+/-0.9% respectively. No effect of PTH on total body BMC was seen during the treatment period. The trabecular volumetric BMD was measured by pQCT. Ovariectomy reduced the trabecular volumetric BMD by 52+/-6.7%. The pQCT technique detected a clear effect on trabecular volumetric BMD after 2 weeks of PTH treatment (ovx 94+/-29% and sham-operated 46+/-10% more than vehicle-treated). The cortical bone was measured in a mid-diaphyseal pQCT scan of the tibia. Ovariectomy reduced the cortical BMC by 9+/-2%. PTH treatment for 8 weeks increased cortical BMC in ovx mice. In conclusion, the pQCT technique is more sensitive than the DXA technique in the detection of bone loss after ovariectomy and increased bone mass after PTH treatment in mice. Notably, the pQCT, but not the DXA, technique detected a dramatic effect as early as after 2 weeks of PTH treatment. Dynamic pQCT measurements will be useful for monitoring skeletal changes during growth and development, and for drug evaluation in mice.

Free access

N Andersson, VV Surve, D Lehto-Axtelius, C Ohlsson, R Hakanson, K Andersson, and B Ryberg

Both ovariectomy (Ovx) and gastrectomy (Gx) induce osteopaenia in rats and humans. While the effect of Ovx has been ascribed to oestrogen deficiency, the underlying mechanism behind Gx is poorly understood. Alendronate, oestrogen and parathyroid hormone (PTH) are known to prevent the osteopaenia induced by Ovx in rats. The purpose of the present study was to determine whether alendronate, oestrogen or PTH could also prevent Gx-evoked osteopaenia. Rats were Ovx-, Gx-, or were sham-operated (Sham) and were then treated with alendronate (50 micro g/kg/day), oestrogen (10 micro g/kg/day) or PTH(1-84) (75 micro g/kg/day) for eight weeks. At sacrifice, serum PTH was unaffected by surgery (Ovx, 64+/-8 pg/ml; Gx, 75+/-13 pg/ml; Sham, 58+/-11 pg/ml). The bone mineral density (BMD) of the fifth lumbar vertebra (L5) was analysed. Ovx and Gx reduced the BMD (ash weight/Volume) of the L5 by 15+/-4% and 22+/-3% respectively. Trabecular BMD and the cortical bone mineral content (BMC) of the femur were assessed using peripheral computed tomography. Both Ovx and Gx markedly reduced trabecular BMD in the metaphyseal area of the distal femur (Ovx, -37+/-7%; Gx, -49+/-7%). The cortical BMC of the femur was only slightly reduced. Alendronate prevented trabecular bone loss after both Ovx and Gx, while oestrogen and PTH prevented trabecular bone loss after Ovx but not after Gx. In conclusion, the bisphosphonate alendronate prevented both Ovx- and Gx-induced trabecular bone loss. In contrast, PTH and oestrogen prevented Ovx-induced but not Gx-induced trabecular bone loss, suggesting that the mechanism behind the trabecular bone loss in Ovx rats differs from that in Gx rats. The results support the notion that the mechanism of action for the bone-sparing effect of these drugs differs. The ability of alendronate, and probably also other bisphosphonates, to prevent Gx-evoked osteopaenia in the rat might be of potential clinical interest when dealing with post-Gx osteopaenia in humans.

Free access

MK Lindberg, Z Weihua, N Andersson, S Moverare, H Gao, O Vidal, M Erlandsson, S Windahl, G Andersson, DB Lubahn, H Carlsten, K Dahlman-Wright, JA Gustafsson, and C Ohlsson

Estrogen exerts a variety of important physiological effects, which have been suggested to be mediated via the two known estrogen receptors (ERs), alpha and beta. Three-month-old ovariectomized mice, lacking one or both of the two estrogen receptors, were given estrogen subcutaneously (2.3 micro g/mouse per day) and the effects on different estrogen-responsive parameters, including skeletal effects, were studied. We found that estrogen increased the cortical bone dimensions in both wild-type (WT) and double ER knockout (DERKO) mice. DNA microarray analysis was performed to characterize this effect on cortical bone and it identified four genes that were regulated by estrogen in both WT and DERKO mice. The effect of estrogen on cortical bone in DERKO mice might either be due to remaining ERalpha activity or represent an ERalpha/ERbeta-independent effect. Other effects of estrogen, such as increased trabecular bone mineral density, thymic atrophy, fat reduction and increased uterine weight, were mainly ERalpha mediated.

Free access

Niklas Andersson, Ulrika Islander, Emil Egecioglu, Elin Löf, Charlotte Swanson, Sofia Movérare-Skrtic, Klara Sjögren, Marie K Lindberg, Hans Carlsten, and Claes Ohlsson

It is generally believed that estrogens exert their bone sparing effects directly on the cells within the bone compartment. The aim of the present study was to investigate if central mechanisms might be involved in the bone sparing effect of estrogens. The dose–response of central (i.c.v) 17β-estradiol (E2) administration was compared with that of peripheral (s.c.) administration in ovariectomized (ovx) mice. The dose–response curves for central and peripheral E2 administration did not differ for any of the studied estrogen-responsive tissues, indicating that these effects were mainly peripheral. In addition, ovx mice were treated with E2 and/or the peripheral estrogen receptor antagonist ICI 182,780. ICI 182,780 attenuated most of the estrogenic response regarding uterus weight, retroperitoneal fat weight, cortical BMC and trabecular bone mineral content (P<0.05). These findings support the notion that the primary target tissue that mediates the effect of E2 on bone is peripheral and not central.

Open access

K L Gustafsson, K H Nilsson, H H Farman, A Andersson, V Lionikaite, P Henning, J Wu, S H Windahl, U Islander, S Movérare-Skrtic, K Sjögren, H Carlsten, J-Å Gustafsson, C Ohlsson, and M K Lagerquist

Estrogen treatment has positive effects on the skeleton, and we have shown that estrogen receptor alpha (ERα) expression in cells of hematopoietic origin contributes to a normal estrogen treatment response in bone tissue. T lymphocytes are implicated in the estrogenic regulation of bone mass, but it is not known whether T lymphocytes are direct estrogen target cells. Therefore, the aim of this study was to determine the importance of ERα expression in T lymphocytes for the estrogenic regulation of the skeleton using female mice lacking ERα expression specifically in T lymphocytes (Lck-ERα−/−) and ERαflox/flox littermate (control) mice. Deletion of ERα expression in T lymphocytes did not affect bone mineral density (BMD) in sham-operated Lck-ERα−/− compared to control mice, and ovariectomy (ovx) resulted in a similar decrease in BMD in control and Lck-ERα−/− mice compared to sham-operated mice. Furthermore, estrogen treatment of ovx Lck-ERα−/− led to an increased BMD that was indistinguishable from the increase seen after estrogen treatment of ovx control mice. Detailed analysis of both the appendicular (femur) and axial (vertebrae) skeleton showed that both trabecular and cortical bone parameters responded to a similar extent regardless of the presence of ERα in T lymphocytes. In conclusion, ERα expression in T lymphocytes is dispensable for normal estrogenic regulation of bone mass in female mice.

Free access

Annica Andersson, Anna E Törnqvist, Sofia Moverare-Skrtic, Angelina I Bernardi, Helen H Farman, Pierre Chambon, Cecilia Engdahl, Marie K Lagerquist, Sara H Windahl, Hans Carlsten, Claes Ohlsson, and Ulrika Islander

Apart from the role of sex steroids in reproduction, sex steroids are also important regulators of the immune system. 17β-estradiol (E2) represses T and B cell development, but augments B cell function, possibly explaining the different nature of immune responses in men and women. Both E2 and selective estrogen receptors modulators (SERM) act via estrogen receptors (ER). Activating functions (AF)-1 and 2 of the ER bind to coregulators and thus influence target gene transcription and subsequent cellular response to ER activation. The importance of ERαAF-1 and AF-2 in the immunomodulatory effects of E2/SERM has previously not been reported. Thus, detailed studies of T and B lymphopoiesis were performed in ovariectomized E2-, lasofoxifene- or raloxifene-treated mice lacking either AF-1 or AF-2 domains of ERα, and their wild-type littermate controls. Immune cell phenotypes were analyzed with flow cytometry. All E2 and SERM-mediated inhibitory effects on thymus cellularity and thymic T cell development were clearly dependent on both ERαAFs. Interestingly, divergent roles of ERαAF-1 and ERαAF-2 in E2 and SERM-mediated modulation of bone marrow B lymphopoiesis were found. In contrast to E2, effects of lasofoxifene on early B cells did not require functional ERαAF-2, while ERαAF-1 was indispensable. Raloxifene reduced early B cells partly independent of both ERαAF-1 and ERαAF-2. Results from this study increase the understanding of the impact of ER modulation on the immune system, which can be useful in the clarification of the molecular actions of SERMs and in the development of new SERM.

Free access

Johan Svensson, Jon Kindblom, Ruijin Shao, Sofia Movérare-Skrtic, Marie K Lagerquist, Niklas Andersson, Klara Sjögren, Katrien Venken, Dirk Vanderschueren, John-Olov Jansson, Olle Isaksson, and Claes Ohlsson

Both IGF1 and androgens are major enhancers of prostate growth and are implicated in the development of prostate hyperplasia and cancer. The aim of the present study was to investigate whether liver-derived endocrine IGF1 modulates the androgenic response in prostate. Mice with adult, liver-specific inactivation of IGF1 (LI-IGF1−/− mice) displayed an ∼80% reduction in serum IGF1 levels associated with decreased prostate weight compared with control mice (anterior prostate lobe −19%, P<0.05; dorsolateral prostate (DLP) lobe −35%, P<0.01; ventral prostate (VP) lobe −47%, P<0.01). Reduced androgen receptor (Ar) mRNA and protein levels were observed in the VP lobe (−34% and −30% respectively, both P<0.05 versus control mice). Analysis of prostate morphology showed reductions in both the glandular and fibromuscular compartments of the VP and DLP lobes that were proportional to the reductions in the weights of these lobes. Immunohistochemistry revealed reduced intracellular AR immunoreactivity in the VP and DLP lobes. The non-aromatizable androgen dihydrotestosterone increased VP weight to a lesser extent in orchidectomized (ORX) LI-IGF1−/− mice than in ORX controls (−40%, P<0.05 versus control mice). In conclusion, deficiency of liver-derived IGF1 reduces both the glandular and fibromuscular compartments of the prostate, decreases AR expression in prostate, and reduces the stimulatory effect of androgens on VP weight. These findings may explain, at least in part, the well-known clinical association between serum IGF1 levels and conditions with abnormal prostate growth.