Search Results
You are looking at 1 - 2 of 2 items for
- Author: K Brismar x
- Refine by access: All content x
Search for other papers by MS Lewitt in
Google Scholar
PubMed
Search for other papers by K Brismar in
Google Scholar
PubMed
Search for other papers by J Ohlson in
Google Scholar
PubMed
Search for other papers by J Hartman in
Google Scholar
PubMed
Insulin-like growth factor-binding protein-1 (IGFBP-1) regulates IGF availability for glucose homeostasis. The IGFBP-1 promoter shares common regulatory response elements with phosphoenol pyruvate carboxykinase (PEPCK), the expression and activity of which is inhibited by lithium chloride, associated with an inhibition of glycogen synthase kinase (GSK)-3 activity, in the rat hepatoma cell line H4-II-E. We therefore determined the effect of lithium chloride on IGFBP-1 expression and secretion in H4-II-E cells. Lithium chloride inhibited IGFBP-1 secretion in a dose response and reversible manner by approx 80% during 5-h and 16-h incubations. An inhibitory effect on IGFBP-1 mRNA expression was observed at 2 h. The inhibitory effect of lithium and insulin were not additive when used alone, but inhibition by lithium occurred when insulin action was blocked by activating AMP-activated protein kinase with 5-aminoimidazole-4-carboxamide-riboside (AICAR). These findings suggest that GSK-3 inhibition, or another pathway activated by lithium, may be involved in a pathway controlling IGFBP-1, inhibiting synthesis when insulin activity is absent or impaired.
Search for other papers by Y Hong in
Google Scholar
PubMed
Search for other papers by K Brismar in
Google Scholar
PubMed
Search for other papers by K Hall in
Google Scholar
PubMed
Search for other papers by N L Pedersen in
Google Scholar
PubMed
Search for other papers by U de Faire in
Google Scholar
PubMed
Abstract
It has previously been shown that the serum levels of insulin-like growth factor-I (IGF-I), IGF-binding protein-1 (IGFBP-1), and insulin are influenced by genetic effects to various degrees. From a clinical and preventive point of view, however, it is important to identify potentially modifiable non-genetic factors influencing the levels of these measures. Because monozygotic twin pairs share the same genetic background, differences in phenotypic levels within monozygotic twin pairs are believed to be due to non-genetic influences. Accordingly, the associations between intrapair differences in one phenotype and intrapair differences in another phenotype are also due to non-genetic influences. The present sample of 97 pairs of monozygotic twins from the population-based Swedish Adoption/Twin Study of Aging (SATSA) provided the opportunity to assess non-genetic influences on the levels of IGF-I, IGFBP-1, and insulin. Several metabolic measures were found to account for the variation of IGF-I, IGFBP-1, and insulin after controlling for the genetic influences. IGFBP-1 and glucose were significant predictors for the levels of IGF-I. IGFBP-1 and glucose together explained about one quarter of the non-genetic variation of IGF-I. However, when IGFBP-1 was dropped from the regression model, insulin was the only independent predictor of IGF-I, and explained about 19% of the non-genetic variation for IGF-I. For IGFBP-1, insulin and IGF-I were the significant non-genetic predictors. Insulin and IGF-I explained about 28 and 8% respectively of the non-genetic variation for IGFBP-1, while for insulin, IGF-I, triglycerides, body height, glucose, and body mass index (BMI) explained approximately 20, 12, 6, 5 and 5% respectively of the non-genetic variation.
Journal of Endocrinology (1997) 153, 251–257