Search Results

You are looking at 1 - 7 of 7 items for

  • Author: K Kangawa x
  • Refine by Access: All content x
Clear All Modify Search
Free access

N Hirayama, K Kitamura, T Imamura, J Kato, Y Koiwaya, T Tsuji, K Kangawa, and T Eto

In the biosynthesis of adrenomedullin (AM), an intermediate form, AM(1-52)-glycine-COOH (iAM), is cleaved from proAM and subsequently processed to a biologically active mature form, AM(1-52)-NH2 (mAM), by enzymatic amidation. We recently reported that immunoreactive AM in human plasma consists of mAM and iAM. To clarify the pathophysiological roles of mAM and iAM in heart failure, we established an assay method to specifically detect mAM, and we determined the plasma concentrations of mAM and iAM in 68 patients with congestive heart failure (CHF). The plasma mAM concentrations of the CHF patients classified as being class I or II of New York Heart Association (NYHA) functional classification were significantly greater than those of the 28 healthy controls, and a further increase was noted in the class III or IV patients. Similar increases in plasma iAM were also observed in these patients compared with controls. The increased plasma mAM and iAM in 12 patients with exacerbated CHF were significantly reduced by treatment of their CHF for 7 days. In addition, the plasma concentrations of both mAM and iAM were significantly correlated with pulmonary capillary wedge pressure, pulmonary artery pressure, right atrial pressure, cardiothoracic ratio, heart rate, and the plasma concentrations of atrial and brain natriuretic peptides in the CHF patients. Thus the plasma concentrations of both mAM and iAM were increased progressively in proportion to the severity of CHF. These results suggest that, though the role of iAM remains to be clarified, mAM acts against the further deterioration of heart failure in patients with CHF.

Free access

T Yada, H Kaiya, K Mutoh, T Azuma, S Hyodo, and K Kangawa

To clarify the role of ghrelin in the fish immune system, the in vitro effect of ghrelin was examined in phagocytic leukocytes of rainbow trout (Oncorhynchus mykiss). Administration of trout ghrelin and des-VRQ-trout ghrelin, in which three amino acids are deleted from trout ghrelin, increased superoxide production in zymosan-stimulated phagocytic leukocytes from the head kidney. Gene expression of growth hormone (GH) secretagogue-receptor (GHS-R) was detected by RT–PCR in leukocytes. Pretreatment of phagocytic leukocytes with a GHS-R antagonist, [D-Lys3]-GHRP-6, abolished the stimulatory effects of trout ghrelin and des-VRQ-trout ghrelin on superoxide production. Ghrelin increased mRNA levels of superoxide dismutase and GH expressed in trout phagocytic leukocytes. Immunoneutralization of GH by addition of anti-salmon GH serum to the medium blocked the stimulatory effect of ghrelin on superoxide production. These results suggest that ghrelin stimulates phagocytosis in fish leukocytes through a GHS-R-dependent pathway, and also that the effect of ghrelin is mediated, at least in part, by GH secreted by leukocytes.

Free access

T Hayashida, K Nakahara, MS Mondal, Y Date, M Nakazato, M Kojima, K Kangawa, and N Murakami

Ghrelin, a 28 amino acid peptide, has recently been isolated from the rat stomach as an endogenous ligand for the GH secretagogue receptor. The fact that administration of ghrelin, centrally or peripherally, stimulates both food intake and GH secretion suggests that stomach ghrelin has an important role in the growth of rats. We used immunohistochemistry and radioimmunoassay to determine the age at which ghrelin-immunostained cells begin to appear in the rat stomach. Ghrelin-immunoreactive cells were found to be expressed in the fetal stomach from pregnancy day 18. The number of ghrelin-immunoreactive cells in the fetal stomach increased as the stomach grew. The amount of ghrelin in the glandular part of the rat stomach also increased, in an age-dependent manner, from the neonatal stage to adult. Eight hours of milk restriction significantly decreased the ghrelin concentration in the stomachs of 1-week-old rats, and increased the ghrelin concentration in their plasma. Administration of ghrelin to 1- and 3-week-old rats increased plasma GH concentrations. The daily subcutaneous administration of ghrelin to pregnant rats from day 15 to day 21 of pregnancy caused an increase in body weight of newborn rats. In addition, daily subcutaneous administration of ghrelin to neonatal rats from birth advanced the day of vaginal opening from day 30.7+/-0.94 to day 27.9+/-0.05. These results suggest that ghrelin may be involved in neonatal development.

Free access

I Sakata, T Tanaka, M Matsubara, M Yamazaki, S Tani, Y Hayashi, K Kangawa, and T Sakai

Ghrelin was recently isolated from the rat stomach as an endogenous ligand for the GH secretagogue receptor. Although it is well known that a large amount of ghrelin is produced in the gastrointestinal tract, developmental changes in ghrelin mRNA expression and differentiation of ghrelin-immunopositive (ghrelin-ip) and mRNA-expressing (ghrelin-ex) cells in the stomach have not been elucidated. In this study, we therefore investigated the changes in ghrelin mRNA expression levels and in the numbers of ghrelin-ip and -ex cells in the stomachs of 1- to 8-week-old male and female rats by Northern blot analysis, immunohistochemistry and in situ hybridization. Northern blot analysis showed that the level of weak ghrelin mRNA expression was low in the postnatal period but then increased in a dimorphic pattern, i.e. transient stagnation at 4 weeks in the male rats and at 5 weeks in the female rats. The number of ghrelin-ip and ghrelin-ex cells also increased after birth, and more numerous ghrelin cells were found in female rats than in male rats, and this finding was confirmed by Northern blot analysis. Ghrelin-ip and -ex cells first appeared in the glandular base of the fundic gland and then they were found in the glandular base and the glandular neck at 3 weeks of age, suggesting that the distribution of ghrelin cells is extended from the glandular base to the glandular neck during the postneonatal development period. This is the first report on detailed changes in postneonatal ghrelin expression level and in the number of ghrelin cells in the rat stomach. The sexual dimorphism of ghrelin expression and ghrelin cell differentiation suggest that ghrelin plays an important physiological role in the stomach.

Free access

H Kaiya, M Kojima, H Hosoda, LG Riley, T Hirano, EG Grau, and K Kangawa

We purified ghrelin from stomach extracts of a teleost fish, the Japanese eel (Anguilla japonica) and found that it contained an amide structure at the C-terminal end. Two molecular forms of ghrelin with 21 amino acids were identified by cDNA and mass spectrometric analyses: eel ghrelin-21, GSS(O-n-octanoyl)FLSPSQRPQGKDKKPP RV-amide and eel ghrelin-21-C10, GSS(O-n-decanoyl) FLSPSQRPQGKDKKPPRV-amide. Northern blot and RT-PCR analyses revealed high gene expression in the stomach. Low levels of expression were found only in the brain, intestines, kidney and head kidney by RT-PCR analysis. Eel ghrelin-21 increased plasma growth hormone (GH) concentrations in rats after intravenous injection; the potency was similar to that of rat ghrelin. We also examined the effect of eel ghrelin on the secretion of GH and prolactin (PRL) from organ-cultured tilapia pituitary. Eel ghrelin-21 at a dose of 0.1 nM stimulated the release of GH and PRL, indicating that ghrelin acts directly on the pituitary. The present study revealed that ghrelin is present in fish stomach and has the ability to stimulate the secretion of GH from fish pituitary. A novel regulatory pathway of GH secretion by gastric ghrelin seems to be conserved from fish to human.

Free access

H Takahashi, Y Kurose, S Kobayashi, T Sugino, M Kojima, K Kangawa, Y Hasegawa, and Y Terashima

The purpose of this study was to investigate the effects of physiologic levels of ghrelin on insulin secretion and insulin sensitivity (glucose disposal) in scheduled fed-sheep, using the hyperglycemic clamp and hyperinsulinemic euglycemic clamp respectively. Twelve castrated Suffolk rams (69.8 ± 0.6 kg) were conditioned to be fed alfalfa hay cubes (2% of body weight) once a day. Three hours after the feeding, synthetic ovine ghrelin was intravenously administered to the animals at a rate of 0.025 and 0.05 μg/kg body weight (BW) per min for 3 h. Concomitantly, the hyperglycemic clamp or the hyperinsulinemic euglycemic clamp was carried out. In the hyperglycemic clamp, a target glucose concentration was clamped at 100 mg/100 ml above the initial level. In the hyperinsulinemic euglycemic clamp, insulin was intravenously administered to the animals for 3 h at a rate of 2 mU/kg BW per min. Basal glucose concentrations (44± 1 mg/dl) were maintained by variably infusing 100 mg/dl glucose solution. In both clamps, plasma ghrelin concentrations were dose-dependently elevated and maintained at a constant level within the physiologic range. Ghrelin infusions induced a significant (ANOVA; P < 0.01) increase in plasma GH concentrations. In the hyperglycemic clamp, plasma insulin levels were increased by glucose infusion and were significantly (P < 0.05) greater in ghrelin-infused animals. In the hyperinsulinemic euglycemic clamp, glucose infusion rate, an index of insulin sensitivity, was not affected by ghrelin infusion. In conclusion, the present study has demonstrated for the first time that ghrelin enhances glucose-induced insulin secretion in the ruminant animal.

Free access

N Murakami, T Hayashida, T Kuroiwa, K Nakahara, T Ida, MS Mondal, M Nakazato, M Kojima, and K Kangawa

Ghrelin, a 28-amino-acid peptide, has recently been isolated from the rat stomach as an endogenous ligand for the GH secretagogue receptor. We have reported previously that central or peripheral administration of ghrelin stimulates food intake, and the secretion of GH and gastric acid in rats. In the present study, we investigated how much endogenous centrally released ghrelin is involved in the control of food intake and body weight gain. We also examined the profile of ghrelin secretion from the stomach by RIA using two kinds of anti-ghrelin antiserum, one raised against the N-terminal ([Cys(12)]-ghrelin[1-11]) region and one raised against the C-terminal ([Cys(0)]-ghrelin [13-28]) region of the peptide. The former antibody recognizes specifically ghrelin with n- octanoylated Ser 3 (acyl ghrelin), and does not recognize des-acyl ghrelin. The latter also recognizes des-acyl ghrelin (i.e. total ghrelin). Intracerebroventricular treatment with the anti-ghrelin antiserum against the N-terminal region twice a day for 5 days decreased significantly both daily food intake and body weight. Des-acyl ghrelin levels were significantly higher in the gastric vein than in the trunk. Either fasting for 12 h, administration of gastrin or cholecystokinin resulted in increase of both acyl and des-acyl ghrelin levels. The ghrelin levels exhibited a diurnal pattern, with the bimodal peaks occurring before dark and light periods. These two peaks were consistent with maximum and minimum volumes of gastric content respectively. These results suggest that (1) endogenous centrally released ghrelin participates in the regulation of food intake and body weight, (2) acyl ghrelin is secreted from the stomach, (3) intestinal hormones stimulate ghrelin release from the stomach, and (4) regulation of the diurnal rhythm of ghrelin is complex, since ghrelin secretion is augmented under conditions of both gastric emptying and filling.