Search Results
You are looking at 1 - 3 of 3 items for
- Author: K Nygard x
- Refine by access: All content x
Search for other papers by LD Wallen in
Google Scholar
PubMed
Search for other papers by W Myint in
Google Scholar
PubMed
Search for other papers by K Nygard in
Google Scholar
PubMed
Search for other papers by S Shimasaki in
Google Scholar
PubMed
Search for other papers by DR Clemmons in
Google Scholar
PubMed
Search for other papers by VK Han in
Google Scholar
PubMed
A role for IGF binding proteins (IGFBPs) in lung development is suggested by the identification of IGFBPs in lung tissue and production of IGFBPs by fetal lung cells in culture. To characterize the expression of IGFBPs during lung development in the rat in vivo (16 days gestation through adulthood), the expression of IGFBP mRNAs (IGFBP-1 to IGFBP-6) was examined by Northern analysis and in situ hybridization, and IGFBP peptides (IGFBP-2, IGFBP-3, and IGFBP-5) were localized by immunohistochemistry. IGFBP-1 mRNA was not detectable. IGFBP-2 mRNA (1.8 kb) was expressed in both fetal and postnatal life with peak expression during the fetal pseudoglandular stage. IGFBP-2 mRNA was localized mainly to airway epithelium. IGFBP-3 mRNA (2.4 kb) was maximally expressed postnatally in the saccular stage of lung development; it was identified in airway epithelium and interstitium in the fetal lung, but predominantly in airway epithelium after birth. IGFBP-4 (2.6 kb) and IGFBP-5 (6.0 kb) mRNA levels were maximal after birth, from 3 to 21 days postnatal (saccular and alveolar stage). IGFBP-4 mRNA was localized primarily to the interstitium and blood vessels early in development, but was abundant in airway epithelium in the adult. IGFBP-5 mRNA was most abundant in the airway epithelium. IGFBP-3, IGFBP-4, IGFBP-5, and to a lesser extent IGFBP-6 were localized to the large cartilaginous airways in the adult. IGFBP-2, IGFBP-3, and IGFBP-5 peptides were distributed more widely than their respective mRNAs, with a temporal pattern of immunoreactivity following that of their mRNAs. Maximal staining was noted in airway epithelium for IGFBP-2 in the newborn, for IGFBP-3 in the saccular stage (newborn to 3 days postnatal), and for IGFBP-5 in the alveolar stage (5 to 21 days postnatal). Our studies demonstrate that IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 are synthesized and distributed in spatially and temporally different patterns in the developing lung. The widespread distribution of IGFBP immunoreactivity compared with their respective mRNAs suggests that IGFBPs are important paracrine factors in the regulation of IGF action in the developing lung.
Search for other papers by M Tucci in
Google Scholar
PubMed
Search for other papers by K Nygard in
Google Scholar
PubMed
Search for other papers by BV Tanswell in
Google Scholar
PubMed
Search for other papers by HW Farber in
Google Scholar
PubMed
Search for other papers by DJ Hill in
Google Scholar
PubMed
Search for other papers by VK Han in
Google Scholar
PubMed
Endothelial cells (EC) are hypoxia-tolerant and their capacity to proliferate in low oxygen tension is essential to maintain vascular endothelium integrity. The present study addresses whether hypoxia alters the expression of insulin-like growth factor (IGF) and IGF binding protein (IGFBP) genes in bovine aortic EC (BAEC) and bovine pulmonary artery EC (BPAEC). EC were cultured in normoxic (21%) conditions and exposed to 0% oxygen for 24, 48, or 72 h; some cells were reoxygenated by exposure to 21% oxygen for 24 or 48 h following hypoxia. IGF-I peptide and mRNA levels were very low in both cell types, and decreased further with exposure to hypoxia. Ligand blotting showed that both cell types synthesized 24 kDa (IGFBP-4), 30 kDa (IGFBP-5 and/or IGFBP-6), 43 kDa and 48 kDa IGFBPs (IGFBP-3 glycosylation variants). IGFBP-4 was the predominant IGFBP expressed by both cell types and did not change with exposure to hypoxia. Hypoxia caused a significant increase in IGFBP-3 secretion in BPAEC but not in BAEC. IGFBP-3 stable mRNA levels in BPAEC were increased correspondingly. IGFBP-5 was expressed only in BAEC and decreased with exposure to hypoxia. IGFBP-6 mRNA expression was low and increased in both cell types with exposure to hypoxia. These results demonstrate that EC IGFBP baseline expression as well as its expression in hypoxia vary in different vascular beds and suggest that the IGFBPs may be the dominant paracrine regulators of proliferation of EC as well as maintenance of endothelium integrity during hypoxia.
Search for other papers by A M Carter in
Google Scholar
PubMed
Search for other papers by M J Kingston in
Google Scholar
PubMed
Search for other papers by K K Han in
Google Scholar
PubMed
Search for other papers by D M Mazzuca in
Google Scholar
PubMed
Search for other papers by K Nygard in
Google Scholar
PubMed
Search for other papers by V K M Han in
Google Scholar
PubMed
The IGF system is one of the most important endocrine and paracrine growth factor systems that regulate fetal and placental growth. We hypothesized that intrauterine growth restriction (IUGR) in guinea pigs is mediated by the altered expression of IGFs and/or IGF binding protein (BP) mRNAs in tissues and is related to growth of specific tissues. IUGR was induced by unilateral uterine artery ligation on day 30 of gestation, and fetal plasma, amniotic fluid and tissue samples were collected at 55–57 days (term about 68 days) from paired IUGR and control fetuses (n=6). Western ligand blotting and immunoblotting were used to compare IGFBP levels in plasma and amniotic fluid. Total RNA was extracted from placenta and fetal tissues, and the relative abundance of IGF-II and IGFBP-1–6 mRNA was determined by Northern blotting, using species-specific probes where available. IUGR fetuses had decreased (P<0.01, by Student’s t-test) placental weight and body weight with an increase in the brain:liver weight ratio. The principal IGFBPs in fetal plasma migrated at 40–35, 30 and 25 kDa and were identified as IGFBP-3, -2 and -4 respectively. IUGR was associated with elevated plasma IGFBP-2 and IGFBP-4 and reduced IGFBP-3 levels. IGFBPs were detected at low levels in amniotic fluid of control fetuses but at higher levels in IUGR fetuses. In IUGR placentae, there was a small increase in IGFBP-4 mRNA (P<0.05). IGFBP-2 mRNA increased (P<0.001) in liver of IUGR fetuses. IGF-II and IGFBP mRNA expression did not change in fetal muscle. The results are consistent with reduced IGF action, directly or through inhibition by IGFBPs, particularly by circulating and tissue IGFBP-2, as a potential causal factor in decreased growth of the placenta and certain fetal tissues.